Competitive Data Trading Model With Privacy Valuation for Multiple Stakeholders in IoT Data Markets

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 38
  • Download : 0
With the widespread of Internet-of-Things (IoT) environment, a big data concept has emerged to handle a large number of data generated by IoT devices. Moreover, since data-driven approaches now become important for business, IoT data markets have emerged, and IoT big data are exploited by major stakeholders, such as data brokers and data service providers. Since many services and applications utilize data analytic methods with collected data from IoT devices, the conflict issues between privacy and data exploitation are raised, and the markets are mainly categorized as privacy protection markets and privacy valuation markets, respectively. Since these kinds of data value chains (which are mainly considered by business stakeholders) are revealed, data providers are interested in proper incentives in exchange for their privacy (i.e., privacy valuation) under their agreement. Therefore, this article proposes a competitive data trading model that consists of data providers who weigh the value between privacy protection and valuation as well as other business stakeholders. Each data broker considers the willingness-to-sell of data providers, and a single data service provider considers the willingness-to-pay of service consumers. At the same time, multiple data brokers compete to sell their data set to the data service provider as a noncooperative game model. Based on the Nash equilibrium analysis (NE) of the game, the feasibility is shown that the proposed model has the unique NE that maximizes the profits of business stakeholders while satisfying all market participants.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-04
Language
English
Article Type
Article
Citation

IEEE INTERNET OF THINGS JOURNAL, v.7, no.4, pp.3623 - 3639

ISSN
2327-4662
DOI
10.1109/JIOT.2020.2973662
URI
http://hdl.handle.net/10203/275324
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0