U(1) symmetry of the spin-orbit coupled Hubbard model on the kagome lattice

Cited 112 time in webofscience Cited 8 time in scopus
  • Hit : 553
  • Download : 134
DC FieldValueLanguage
dc.contributor.authorKim, Se Kwonko
dc.contributor.authorZang, Jiadongko
dc.date.accessioned2020-06-05T06:20:16Z-
dc.date.available2020-06-05T06:20:16Z-
dc.date.created2020-06-04-
dc.date.created2020-06-04-
dc.date.created2020-06-04-
dc.date.issued2015-11-
dc.identifier.citationPHYSICAL REVIEW B, v.92, no.20-
dc.identifier.issn2469-9950-
dc.identifier.urihttp://hdl.handle.net/10203/274577-
dc.description.abstractWe theoretically study the symmetry properties of the single-band Hubbard model with general spin-orbit coupling (SOC) on the kagome lattice. We show that the global U(1) spin-rotational symmetry is present in the Hubbard Hamiltonian owing to the inversion symmetry centered at the sites. The corresponding spin Hamiltonian has, therefore, SO(2) spin-rotational symmetry, which can be captured by including SOC nonperturbatively. The exact classical ground states, which we obtain for arbitrary SOC, are governed by the SU(2) fluxes associated with SOC threading the constituent triangles. The ground states break the SO(2) symmetry, and the associated Berezinsky-Kosterlitz-Thouless transition temperature is determined by the SU(2) fluxes through the triangles, which we confirm by a finite temperature classical Monte Carlo simulation.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleU(1) symmetry of the spin-orbit coupled Hubbard model on the kagome lattice-
dc.typeArticle-
dc.identifier.wosid000364018100001-
dc.identifier.scopusid2-s2.0-84949546838-
dc.type.rimsART-
dc.citation.volume92-
dc.citation.issue20-
dc.citation.publicationnamePHYSICAL REVIEW B-
dc.identifier.doi10.1103/PhysRevB.92.205106-
dc.contributor.localauthorKim, Se Kwon-
dc.contributor.nonIdAuthorZang, Jiadong-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusANISOTROPIC SUPEREXCHANGE INTERACTION-
dc.subject.keywordPlusFERROMAGNETISM-
dc.subject.keywordPlusORDER-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 112 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0