Finding Hidden Signals in Chemical Sensors Using Deep Learning

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 42
  • Download : 0
Achieving high signal-to-noise ratio in chemical and biological sensors enables accurate detection of target analytes. Unfortunately, below the limit of detection (LOD), it becomes difficult to detect the presence of small amounts of analytes and extract useful information via any of the conventional methods. In this work, we examine the possibility of extracting "hidden signals" using deep neural network to enhance gas sensing below the LOD region. As a test case system, we conduct experiments for H-2 sensing in six different metallic channels (Au, Cu, Mo, Ni, Pt, Pd) and demonstrate that deep neural network can enhance the sensing capabilities for H-2 concentration below the LOD. We demonstrate that this technique could be universally used for different types of sensors and target analytes. Our approach can extract new information from the hidden signals, which can be crucial for next-generation chemical sensing applications and analytical chemistry.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-05
Language
English
Article Type
Article
Citation

ANALYTICAL CHEMISTRY, v.92, no.9, pp.6529 - 6537

ISSN
0003-2700
DOI
10.1021/acs.analchem.0c00137
URI
http://hdl.handle.net/10203/274309
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0