Stagnation-point heating of Fire II with a non-Boltzmann radiation model

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 377
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJo, Sung Minko
dc.contributor.authorKwon, Oh Joonko
dc.contributor.authorKim, Jae Gangko
dc.date.accessioned2020-05-26T06:20:33Z-
dc.date.available2020-05-26T06:20:33Z-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.issued2020-06-
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.153-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://hdl.handle.net/10203/274303-
dc.description.abstractThe present work analyzes the stagnation-point radiative heating in the Fire II flight experiment by devising a collisional-radiative model with non-local absorption. In the stagnation-line flow-field calculations, a viscous shock layer method with a thermochemical nonequilibrium model is utilized. In the radiation calculations, a line-by-line method with the non-Boltzmann electronic populations is employed by adopting the quasi-steady state approach of the electronic master equation calculations. In constructing the electronic master equation, the best set of the electron and heavy-particle impact excitation rates is proposed to achieve better agreement with the measured radiative heating flight data. In the flow-radiation coupling procedure, the effect of the non-local absorption is modeled by devising an iterative process between the quasi-steady state electronic master equation and the radiative transfer equation calculations. Escape factors of the strongest atomic lines and the diatomic nitrogen vacuum ultraviolet systems with the non-local absorption effect are also proposed to more efficiently consider the non-local nature of the radiative transition. When compared with the experimental data from the Fire II trajectories, it is found that the present collisional-radiative model with the non-local absorption improves the ability to predict non-Boltzmann radiative heating.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleStagnation-point heating of Fire II with a non-Boltzmann radiation model-
dc.typeArticle-
dc.identifier.wosid000530718200013-
dc.identifier.scopusid2-s2.0-85081218642-
dc.type.rimsART-
dc.citation.volume153-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2020.119566-
dc.contributor.localauthorKwon, Oh Joon-
dc.contributor.nonIdAuthorKim, Jae Gang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCollisional-radiative model-
dc.subject.keywordAuthorEarth reentry-
dc.subject.keywordAuthorEscape factor-
dc.subject.keywordAuthorNon-Boltzmann electronic population-
dc.subject.keywordAuthorNon-local absorption-
dc.subject.keywordAuthorRadiative heat transfer-
dc.subject.keywordPlusHYPERBOLIC EARTH ENTRY-
dc.subject.keywordPlusCONTINUUM RADIATION-
dc.subject.keywordPlusABSORPTION-COEFFICIENTS-
dc.subject.keywordPlusELECTRONIC EXCITATION-
dc.subject.keywordPlusNONEQUILIBRIUM-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusUNCERTAINTY-
dc.subject.keywordPlusPARAMETERS-
dc.subject.keywordPlusMOLECULES-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0