Bayesian inference of distributed time delay in transcriptional and translational regulation

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 162
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Boseungko
dc.contributor.authorCheng, Yu-Yuko
dc.contributor.authorCinar, Selahattinko
dc.contributor.authorOtt, Williamko
dc.contributor.authorBennett, Matthew R.ko
dc.contributor.authorJosic, Kresimirko
dc.contributor.authorKim, Jae Kyoungko
dc.date.accessioned2020-05-06T06:20:29Z-
dc.date.available2020-05-06T06:20:29Z-
dc.date.created2019-12-24-
dc.date.created2019-12-24-
dc.date.created2019-12-24-
dc.date.issued2020-01-
dc.identifier.citationBIOINFORMATICS, v.36, no.2, pp.586 - 593-
dc.identifier.issn1367-4803-
dc.identifier.urihttp://hdl.handle.net/10203/274102-
dc.description.abstractMotivation: Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks. Results: We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth-death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy.-
dc.languageEnglish-
dc.publisherOXFORD UNIV PRESS-
dc.titleBayesian inference of distributed time delay in transcriptional and translational regulation-
dc.typeArticle-
dc.identifier.wosid000526660300032-
dc.identifier.scopusid2-s2.0-85078559297-
dc.type.rimsART-
dc.citation.volume36-
dc.citation.issue2-
dc.citation.beginningpage586-
dc.citation.endingpage593-
dc.citation.publicationnameBIOINFORMATICS-
dc.identifier.doi10.1093/bioinformatics/btz574-
dc.contributor.localauthorKim, Jae Kyoung-
dc.contributor.nonIdAuthorChoi, Boseung-
dc.contributor.nonIdAuthorCheng, Yu-Yu-
dc.contributor.nonIdAuthorCinar, Selahattin-
dc.contributor.nonIdAuthorOtt, William-
dc.contributor.nonIdAuthorBennett, Matthew R.-
dc.contributor.nonIdAuthorJosic, Kresimir-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCELL GENE-EXPRESSION-
dc.subject.keywordPlusPARAMETER-ESTIMATION-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusHES1-
dc.subject.keywordPlusSTOCHASTICITY-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusMOLECULE-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusDRIVEN-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0