Enhancing the Noise Robustness of the Optimal Computing Budget Allocation Approach

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 78
  • Download : 24
Since an optimal computing budget allocation (OCBA) approach maximizes the efficiency of the simulation budget allocation to correctly find the optimal solutions, various OCBA-based procedures, such as OCBA, OCBAm & x002B;, and MOCBA & x002B;, have been widely applied to solve simulation-based optimization problems. Recently, it has been found that the stochastic noise in a simulation model increases due to the increasing complexity of modern industrial systems. However, the OCBA approach may be inefficient for these practical problems. That is, it is very likely to waste a lot of budget on other candidates that are not truly optimal due to the abnormal simulation results, which occurs frequently in noisy environments. In this paper, we intuitively analyze the causes of this efficiency deterioration of the OCBA approach, and then a simple heuristic adjustment is proposed to enhance the noise robustness of the OCBA approach based on our analysis results. The proposed adjustment allows the OCBA approach to further consider the precision of the simulation results, thereby significantly reducing the wasted budget and increasing the efficiently. In addition, it can be applied to the existing allocation rules without modification and does not require additional computational costs. Many experimental results for the eight OCBA-based procedures clearly demonstrate the effectiveness of this adjustment. In particular, the results of practical problems emphasize its necessity.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-01
Language
English
Article Type
Article
Citation

IEEE ACCESS, v.8, pp.25749 - 25763

ISSN
2169-3536
DOI
10.1109/ACCESS.2020.2970864
URI
http://hdl.handle.net/10203/274034
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
Enhancing-the-Noise-Robustness-of-the-Optimal-Computing-Budget-Allocation-Approach2020IEEE-AccessOpen-Access.pdf(3.62 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0