Mobility of Air-Stable p-type Polythiophene Field-Effect Transistors Fabricated Using Oxidative Chemical Vapor Deposition(accepted)

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 254
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Sunghwanko
dc.contributor.authorSong, Han Wookko
dc.contributor.authorCho, Jae Yongko
dc.contributor.authorRadevski, Nikko
dc.contributor.authorLinh Nguyen Thi Trucko
dc.contributor.authorSung, Tae Hyunko
dc.contributor.authorJiang, Zhong-Taoko
dc.contributor.authorNo, Kwangsooko
dc.date.accessioned2020-04-14T01:20:04Z-
dc.date.available2020-04-14T01:20:04Z-
dc.date.created2020-02-18-
dc.date.created2020-02-18-
dc.date.issued2020-01-
dc.identifier.citationJOURNAL OF ELECTRONIC MATERIALS-
dc.identifier.issn0361-5235-
dc.identifier.urihttp://hdl.handle.net/10203/273884-
dc.description.abstractAir-stable organic field-effect transistors (FETs) based on an unsubstituted polythiophene (PT) channel, processed using oxidative chemical vapor deposition (oCVD), have been investigated. The intrinsic properties of PT, including its rigid backbone structure and resistance to reactions with water and oxygen, lead to excellent air stability of oCVD PT-based FET devices. The effect of the channel/metalization contact resistance on the field-effect mobility (lFE) of PT-based FETs has also been investigated. Due to the channel/metallization contact resistance, the actual voltages applied to the channel are found to be significantly lower than the intended drain bias because of the voltage drops that occur at the source/drain contacts. Transmission-line measurements reveal that more than 30% of the intended drain bias is lost at all gate voltages applied to the channel. Reconstructed output characteristics excluding the contact effect allow the extraction of a corrected mu(FE), which is approximately 40% higher than that with contact resistance.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleMobility of Air-Stable p-type Polythiophene Field-Effect Transistors Fabricated Using Oxidative Chemical Vapor Deposition(accepted)-
dc.typeArticle-
dc.identifier.wosid000510272800002-
dc.identifier.scopusid2-s2.0-85078722375-
dc.type.rimsART-
dc.citation.publicationnameJOURNAL OF ELECTRONIC MATERIALS-
dc.identifier.doi10.1007/s11664-020-07967-5-
dc.contributor.localauthorNo, Kwangsoo-
dc.contributor.nonIdAuthorLee, Sunghwan-
dc.contributor.nonIdAuthorSong, Han Wook-
dc.contributor.nonIdAuthorCho, Jae Yong-
dc.contributor.nonIdAuthorRadevski, Nik-
dc.contributor.nonIdAuthorLinh Nguyen Thi Truc-
dc.contributor.nonIdAuthorSung, Tae Hyun-
dc.contributor.nonIdAuthorJiang, Zhong-Tao-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordAuthorPolythiophene-
dc.subject.keywordAuthoroxidative chemical vapor deposition (oCVD)-
dc.subject.keywordAuthorfield-effect transistors (FETs)-
dc.subject.keywordAuthormobility-
dc.subject.keywordAuthororganic semiconductors-
dc.subject.keywordPlusCONTACT RESISTANCE-
dc.subject.keywordPlusBAND-GAP-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusPOLYMERS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0