Using recurrent neural network models for early detection of heart failure onset

Cited 238 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
Objective: We explored whether use of deep learning to model temporal relations among events in electronic health records (EHRs) would improve model performance in predicting initial diagnosis of heart failure (HF) compared to conventional methods that ignore temporality. Materials and Methods: Data were from a health system's EHR on 3884 incident HF cases and 28 903 controls, identified as primary care patients, between May 16, 2000, and May 23, 2013. Recurrent neural network (RNN) models using gated recurrent units (GRUs) were adapted to detect relations among time-stamped events (eg, disease diagnosis, medication orders, procedure orders, etc.) with a 12-to 18-month observation window of cases and controls. Model performance metrics were compared to regularized logistic regression, neural network, support vector machine, and K-nearest neighbor classifier approaches. Results: Using a 12-month observation window, the area under the curve (AUC) for the RNN model was 0.777, compared to AUCs for logistic regression (0.747), multilayer perceptron (MLP) with 1 hidden layer (0.765), support vector machine (SVM) (0.743), and K-nearest neighbor (KNN) (0.730). When using an 18-month observation window, the AUC for the RNN model increased to 0.883 and was significantly higher than the 0.834 AUC for the best of the baseline methods (MLP). Conclusion: Deep learning models adapted to leverage temporal relations appear to improve performance of models for detection of incident heart failure with a short observation window of 12-18 months.
Publisher
OXFORD UNIV PRESS
Issue Date
2017-03
Language
English
Article Type
Article
Citation

JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, v.24, no.2, pp.361 - 370

ISSN
1067-5027
DOI
10.1093/jamia/ocw112
URI
http://hdl.handle.net/10203/273826
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 238 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0