Effects of Thickness and Crystallographic Orientation on Tensile Properties of Thinned Silicon Wafers

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 111
  • Download : 0
Thinning silicon wafers for stacking in limited space is essential for three-dimensional integration (3DI) technology of semiconductors. Due to a lack of research on the mechanical properties of thinned silicon wafers, however, it is difficult to assess and improve the mechanical reliability of 3DI semiconductor devices. This paper reports the effects of thickness and crystallographic orientation on the tensile properties, such as Young’s modulus, elongation, and strength, of the thinned silicon wafer. Tensile properties of a 100 silicon wafer are measured using a direct tensile testing system, where a digital image correlation method is adopted for accurate strain measurement. Femtosecond laser patterning for accurate shape control is used to fabricate dog-bone-shaped specimens with various thicknesses and crystallographic orientations. The effect of crystallographic orientation is investigated for <110>, <320>, <210>, and <100> orientations. The Young’s modulus of each orientation closely matches the theory of anisotropic elasticity. The surface energy ratios between crystallographic planes are calculated by fracture mechanics analysis. As the thickness decreases from 100 to 10-μm, the elongation and strength increase three-fold while the Young’s modulus is constant along the <110> direction. The strength results are analyzed with a Weibull statistical size effect model, where the Weibull modulus is calculated to be 2.35, which correlates strength only with thickness variation. Using this value and the Weibull size effect model, the expected strength of a specific thickness can be calculated easily without additional experiments.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-02
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, v.10, no.2, pp.1 - 1

ISSN
2156-3950
DOI
10.1109/tcpmt.2019.2931640
URI
http://hdl.handle.net/10203/273752
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0