To Gather Together for a Better World: Understanding and Leveraging Communities in Micro-lending Recommendation

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 166
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoo, Jaegulko
dc.contributor.authorLee, Danielko
dc.contributor.authorDilkina, Bistrako
dc.contributor.authorZha, Hongyuanko
dc.contributor.authorPark, Haesunko
dc.date.accessioned2020-03-25T02:21:05Z-
dc.date.available2020-03-25T02:21:05Z-
dc.date.created2020-03-24-
dc.date.issued2014-04-
dc.identifier.citation23rd International Conference on World Wide Web (WWW), pp.249 - 259-
dc.identifier.urihttp://hdl.handle.net/10203/273501-
dc.description.abstractMicro-finance organizations provide non-profit lending opportunities to mitigate poverty by financially supporting impoverished, yet skilled entrepreneurs who are in desperate need of an institution that lends to them. In Kiva.org, a widely-used crowd-funded micro-financial service, a vast amount of micro-financial activities are done by lending teams, and thus, understanding their diverse characteristics is crucial in maintaining a healthy micro-finance ecosystem. As the first step for this goal, we model different lending teams by using a maximum-entropy distribution approach based on a wealthy set of heterogeneous information regarding micro-financial transactions available at Kiva. Based on this approach, we achieved a competitive performance in predicting the lending activities for the top 200 teams. Furthermore, we provide deep insight about the characteristics of lending teams by analyzing the resulting team-specific lending models. We found that lending teams are generally more careful in selecting loans by a loan's geo-location, a borrower's gender, a field partner's reliability, etc., when compared to lenders without team affiliations. In addition, we identified interesting lending behaviors of different lending teams based on lenders' background and interest such as their ethnic, religious, linguistic, educational, regional, and occupational aspects. Finally, using our proposed model, we tackled a novel problem of lending team recommendation and showed its promising performance results.-
dc.languageEnglish-
dc.publisherInternational World Wide Web Conference Committee-
dc.titleTo Gather Together for a Better World: Understanding and Leveraging Communities in Micro-lending Recommendation-
dc.typeConference-
dc.identifier.wosid000455945100025-
dc.identifier.scopusid2-s2.0-84909592436-
dc.type.rimsCONF-
dc.citation.beginningpage249-
dc.citation.endingpage259-
dc.citation.publicationname23rd International Conference on World Wide Web (WWW)-
dc.identifier.conferencecountryUS-
dc.identifier.conferencelocationSeoul, SOUTH KOREA-
dc.identifier.doi10.1145/2566486.2568020-
dc.contributor.nonIdAuthorLee, Daniel-
dc.contributor.nonIdAuthorDilkina, Bistra-
dc.contributor.nonIdAuthorZha, Hongyuan-
dc.contributor.nonIdAuthorPark, Haesun-
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0