Uncertainty in surface current measurements based on backscattering of electromagnetic waves

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 301
  • Download : 0
This paper presents examples of the data quality assessment of surface radial velocity maps obtained from shore-based single and multiple high-frequency radars (HFRs) using statistical and dynamical approaches in a hindcast mode. Since a single radial velocity map contains partial information regarding a true current field, archived radial velocity data embed geophysical signals, such as tides, wind stress, and near-inertial and low-frequency variance. The spatial consistency of the geophysical signals and their dynamic relationships with driving forces are used to conduct the quality assurance and quality control of radial velocity data. For instance, spatial coherence, tidal amplitudes and phases, and wind-radial transfer functions are used to identify a spurious range and azimuthal bin. The uncertainty and signal-to-noise ratio of radial data are estimated with the standard deviation and cross correlation of paired radials sampled at nearby grid points that belong to two different radars. This review paper can benefit HFR users and operators and those who are interested in analyzing HFR-derived surface radial velocity data.
Publisher
US CLIVAR
Issue Date
2020-02-22
Language
English
Citation

UCAR- Surface Currents Workshop

URI
http://hdl.handle.net/10203/273490
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0