TellTail: Fast Scoring and Detection of Dense Subgraphs

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 244
  • Download : 0
Suppose you visit an e-commerce site, and see that 50 users each reviewed almost all of the same 500 products several times each: would you get suspicious? Similarly, given a Twitter follow graph, how can we design principled measures for identifying surprisingly dense subgraphs? Dense subgraphs often indicate interesting structure, such as network attacks in network traffic graphs. However, most existing dense subgraph measures either do not model normal variation, or model it using an Erdos-Renyi assumption - but this assumption has been discredited decades ago. What is the right assumption then? We propose a novel application of extreme value theory to the dense subgraph problem, which allows us to propose measures and algorithms which evaluate the surprisingness of a subgraph probabilistically, without requiring restrictive assumptions (e.g. Erdos-Renyi). We then improve the practicality of our approach by incorporating empirical observations about dense subgraph patterns in real graphs, and by proposing a fast pruning-based search algorithm. Our approach (a) provides theoretical guarantees of consistency, (b) scales quasi-linearly, and (c) outperforms baselines in synthetic and ground truth settings.
Publisher
Association for the Advancement of Artificial Intelligence
Issue Date
2020-02-10
Language
English
Citation

The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp.4150 - 4157

ISSN
2159-5399
URI
http://hdl.handle.net/10203/272454
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0