Finiteness for crystalline representations of the absolute Galois group of a totally real field

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 97
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Dohoonko
dc.contributor.authorChoi, Suh Hyunko
dc.date.accessioned2020-03-19T01:23:10Z-
dc.date.available2020-03-19T01:23:10Z-
dc.date.created2020-02-18-
dc.date.issued2020-04-
dc.identifier.citationJOURNAL OF NUMBER THEORY, v.209, pp.312 - 329-
dc.identifier.issn0022-314X-
dc.identifier.urihttp://hdl.handle.net/10203/272351-
dc.description.abstractLet K be a totally real field and G(K) := Gal((K) over bar /K) its absolute Galois group, where K is a fixed algebraic closure of (K) over bar. Let e be a prime and E a finite extension of Q(l). Let S be a finite set of finite places of K not dividing l. Assume that K, S, Hodge-Tate type h and a positive integer n are fixed. In this paper, we prove that if 2 is sufficiently large, then, for any fixed E, there are only finitely many isomorphism classes of crystalline representations r : G(K) -> GL(n)(E) unramified outside S boolean OR {v : v vertical bar l}, with fixed Hodge-Tate type h, such that r vertical bar G(K') similar or equal to circle plus r(i)' for some finite totally real field extension K' of K unramified at all places of K over l, where each representation r(i)'over E is an 1-dimensional representation of G(K)' or a totally odd irreducible 2-dimensional representation of G(K)' with distinct Hodge-Tate numbers.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleFiniteness for crystalline representations of the absolute Galois group of a totally real field-
dc.typeArticle-
dc.identifier.wosid000510315400013-
dc.identifier.scopusid2-s2.0-85072725346-
dc.type.rimsART-
dc.citation.volume209-
dc.citation.beginningpage312-
dc.citation.endingpage329-
dc.citation.publicationnameJOURNAL OF NUMBER THEORY-
dc.identifier.doi10.1016/j.jnt.2019.08.023-
dc.contributor.localauthorChoi, Suh Hyun-
dc.contributor.nonIdAuthorChoi, Dohoon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorFiniteness of Galois representations-
dc.subject.keywordAuthorPotential automorphy-
dc.subject.keywordPlusCONJECTURE-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0