Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models

Cited 51 time in webofscience Cited 29 time in scopus
  • Hit : 485
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKo, Taeyoungko
dc.contributor.authorKim, Heeyoungko
dc.date.accessioned2020-03-19T01:23:03Z-
dc.date.available2020-03-19T01:23:03Z-
dc.date.created2020-02-26-
dc.date.created2020-02-26-
dc.date.created2020-02-26-
dc.date.issued2020-04-
dc.identifier.citationIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, v.16, no.4, pp.2868 - 2877-
dc.identifier.issn1551-3203-
dc.identifier.urihttp://hdl.handle.net/10203/272348-
dc.description.abstractIn complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisition is costly and laborious in practice, whereas abundant unlabeled data are often available. To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex relationship between high-dimensional process data and the process status to be modeled. In particular, to consider the temporal correlation and intervariable correlation in multivariate time series process data collected from multiple sensors, we propose two semi-supervised deep generative models incorporating convolutional neural networks. The proposed models are assessed on data from the Tennessee Eastman benchmark process. The results demonstrate the superior performances of the proposed models compared with competing methods.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleFault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models-
dc.typeArticle-
dc.identifier.wosid000510901000070-
dc.identifier.scopusid2-s2.0-85078707455-
dc.type.rimsART-
dc.citation.volume16-
dc.citation.issue4-
dc.citation.beginningpage2868-
dc.citation.endingpage2877-
dc.citation.publicationnameIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS-
dc.identifier.doi10.1109/TII.2019.2941486-
dc.contributor.localauthorKim, Heeyoung-
dc.contributor.nonIdAuthorKo, Taeyoung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorData models-
dc.subject.keywordAuthorTime series analysis-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorSensors-
dc.subject.keywordAuthorCorrelation-
dc.subject.keywordAuthorTask analysis-
dc.subject.keywordAuthorConvolutional auxiliary deep generative model-
dc.subject.keywordAuthormultivariate time series-
dc.subject.keywordAuthorsemi-supervised convolutional variational autoencoder-
dc.subject.keywordAuthorTennessee Eastman process-
dc.subject.keywordAuthorunlabeled data-
dc.subject.keywordPlusDISCRIMINANT-ANALYSIS-
dc.subject.keywordPlusDIAGNOSIS-
Appears in Collection
IE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0