Classes of graphs with no long cycle as a vertex-minor are polynomially chi-bounded

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 276
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Ringiko
dc.contributor.authorKwon, O-joungko
dc.contributor.authorOum, Sang-ilko
dc.contributor.authorSivaraman, Vaidyko
dc.date.accessioned2020-01-07T05:20:12Z-
dc.date.available2020-01-07T05:20:12Z-
dc.date.created2020-01-07-
dc.date.created2020-01-07-
dc.date.created2020-01-07-
dc.date.issued2020-01-
dc.identifier.citationJOURNAL OF COMBINATORIAL THEORY SERIES B, v.140, pp.372 - 386-
dc.identifier.issn0095-8956-
dc.identifier.urihttp://hdl.handle.net/10203/270914-
dc.description.abstractA class g of graphs is chi-bounded if there is a function f such that for every graph G is an element of g and every induced subgraph H of G, chi(H) <= f (omega(H)). In addition, we say that G is polynomially chi-bounded if f can be taken as a polynomial function. We prove that for every integer n >= 3, there exists a polynomial f such that chi(H) <= f (omega(H)) for all graphs with no vertex-minor isomorphic to the cycle graph C-n. To prove this, we show that if G is polynomially chi-bounded, then so is the closure of g under taking the 1-join operation. (C) 2019 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleClasses of graphs with no long cycle as a vertex-minor are polynomially chi-bounded-
dc.typeArticle-
dc.identifier.wosid000503324900012-
dc.identifier.scopusid2-s2.0-85067201962-
dc.type.rimsART-
dc.citation.volume140-
dc.citation.beginningpage372-
dc.citation.endingpage386-
dc.citation.publicationnameJOURNAL OF COMBINATORIAL THEORY SERIES B-
dc.identifier.doi10.1016/j.jctb.2019.06.001-
dc.contributor.localauthorOum, Sang-il-
dc.contributor.nonIdAuthorKwon, O-joung-
dc.contributor.nonIdAuthorSivaraman, Vaidy-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorChromatic number-
dc.subject.keywordAuthorchi-bounded class-
dc.subject.keywordAuthorVertex-minor-
dc.subject.keywordAuthor1-join-
dc.subject.keywordAuthorCycle-
dc.subject.keywordPlusCHROMATIC NUMBER-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0