Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 142
  • Download : 0
Controlling spin interactions in magnetic-molecules/metal is essential for spintronic applications. Recent studies showed that using small molecule coordination, one could switch off the spin interactions between magnetic-molecules and metal substrates. However, this control should not be limited to the two-state switching. The strength of spin interaction can be reduced, but not "off" by the proper selection of small molecules. To demonstrate this, we considered two contrasting systems, NH3 and NO2 coordinated to Co-porphyrin/Au(111). In our scanning tunneling microscopy and spectroscopy (STM and STS), Kondo resonance was preserved with weakened spin coupling after NH3 coordination. However, it disappeared after NO2 coordination, implying "off" spin coupling. These observations are explained with our density functional theory calculation results. This study shows that small molecule coordination to magnetic-molecules/metal is a powerful way to control spin interactions at the single-molecule level.
Publisher
AMER PHYSICAL SOC
Issue Date
2019-12
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW B, v.100, no.24

ISSN
2469-9950
DOI
10.1103/PhysRevB.100.245406
URI
http://hdl.handle.net/10203/270805
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0