Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
Nicotinamide adenine dinucleotide (NAD(+)) is one of the most well-known redox cofactors carrying electrons. Now, it is reported that the intrinsically charged NAD(+) motif can serve as an active electrode in electrochemical lithium cells. By anchoring the NAD(+) motif by the anion incorporation, redox activity of the NAD(+) is successfully implemented in conventional batteries, exhibiting the average voltage of 2.3 V. The operating voltage and capacity are tunable by altering the anchoring anion species without modifying the redox center itself. This work not only demonstrates the redox capability of NAD(+), but also suggests that anchoring the charged molecules with anion incorporation is a viable new approach to exploit various charged biological cofactors in rechargeable battery systems.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2019-11
Language
English
Article Type
Article
Citation

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.58, no.47, pp.16764 - 16769

ISSN
1433-7851
DOI
10.1002/anie.201906844
URI
http://hdl.handle.net/10203/270042
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0