스마트 구조물 균열 감지를 위한 1차원 합성곱신경망(1D CNN) 딥러닝을 이용한 파괴 신호 특정 기법 Determination of Crack Signals Using the Deep Learning Technique Based on a 1D Convolutional Neural Network for Smart Detection of Structural Damage Cracking

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 177
  • Download : 0
초고층 빌딩, 대형 구조물 등의 건설이 일반화됨에 따라 점차 노후화 및 지진, 태풍 등의 자연재해에 의한 구조물의 손상 모니터링에 대한 필요도가 증가하고 있다. 특히, 하부구조인 구조물 기초에서의 손상은 구조물 전체의 건전도에 부정적인 영향을 미칠 수 있기 때문에, 이에 대한 감지는 매우 중요하다. 구조물 건전도 비파괴검사 방법으로는 대표적으로 음향, 진동 감지기법 등이 제안되었으며, 이에 음향, 진동 감지기에 의해 수집된 신호를 해석하여 균열의 발생 위치 및 균열의 크기, 내구도 등을 역으로 추정하는 방법에 관한 연구가 실험실 스케일에서 많이 수행되어왔다. 하지만 실제로 현장에서는 적용되는 경우가 극히 드문 데 그 이유는 평소 발생하는 노이즈 신호(정상 신호)와 손상파괴 신호(비정상 신호)를 구분하는 것이 어렵기 때문이다. 특히 노이즈 신호와 구조물 파괴 신호가 동시에 수집될 때 이를 구분하는 것은 더욱 어려워진다. 이에 본 연구에서는 노이즈 신호(정상 신호)와 손상파괴 신호(비정상 신호)를 수집하고, 무작위로 합성된 신호를 딥러닝 기법인 1D convolutional neural network model을 통해서 정상 신호와 비정상 신호를 구분하는 알고리즘을 개발하였다. 개발된 알고리즘을 사용하면 현장에서 실시간으로 수집된 신호를 구분할 수 있게 됨으로써 구조물 안전성 변화 예측을 통해 재산 및 인명 피해 위험성을 최소화할 수 있을 것으로 생각한다.
Publisher
한국방재학회
Issue Date
2019-08
Language
Korean
Citation

한국방재학회논문집, v.19, no.4, pp.1 - 7

ISSN
1738-2424
DOI
10.9798/kosham.2019.19.4.1
URI
http://hdl.handle.net/10203/269948
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0