Transferable ultra-thin multi-level micro-optics patterned by tunable photoreduction and photoablation for hybrid optics

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 88
  • Download : 0
Next-generation hybrid optics will provide superior performances over traditional optics by combining the advantages of refractive, reflective, and diffractive optics and metasurfaces. Hybrid optics have been realized by integrating diffractive optical structures to the top surface of traditional bulk refractive or reflective optics. However, high-resolution manufacturing requirement of diffractive patterns on top of free-form refractive or reflective optical surfaces have hindered the wide-spread dissemination of hybrid optics. In this paper, we demonstrate a transferable ultra-thin micro-optics having multi-level transmittance and phase profiles which are arbitrarily patterned by tunable photoreduction and photo-ablation of graphene oxides (GO) using femtosecond (fs) direct laser writing. A 5 x 5 array of multi-level ultra-thin micro diffractive lens having a focal length of 15 mm was exemplarily patterned with real-time laser power control; the resulting spot size was smaller than 14 mu m with the suppression of diffractive side peaks by 14.9% at the first order and 10.8% at the second order ones. This laser-patterned diffractive lens array was successfully transferred to the surface of a refractive cylindrical lens via polydimethylsiloxane (PDMS) as the flexible/stretchable substrate; the resulting optical performance agrees well with the theoretical simulation result. This new fabrication method will pave a way to novel hybrid optical systems. (C) 2019 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-08
Language
English
Article Type
Article
Citation

CARBON, v.149, pp.572 - 581

ISSN
0008-6223
DOI
10.1016/j.carbon.2019.04.085
URI
http://hdl.handle.net/10203/269927
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0