Microstructured Ceramic-Coated Carbon Nanotube Surfaces for High Heat Flux Pool Boiling

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 198
  • Download : 49
Stable surfaces with high boiling heat flux are critical to many thermal and energy conversion systems, and it is well-known that the microscale texture and wettability of a surface influences its critical heat flux (CHF). We investigate pool boiling on microstructured ceramic-coated carbon nanotube (CNT) surfaces. CNT microstructures are patterned with precise dimensions over large areas, and a ceramic coating by atomic layer deposition (ALD) imparts stability in the presence of capillary forces and thermal stresses that occur during boiling, achieving a measured CHF as high as 245 W cm(-2). We also show that the nanoporosity of the ceramic-CNT microstructures has a negligible influence on the CHF because surface rewetting is dominated by microscale imbibition. The high CHF values achieved on our surfaces are attributed to the micropatterning and the nanoscale surface texture of the CNTs, which accelerate liquid imbibition upon bubble departure. Our findings also suggest further enhancements in CHF can be made by optimizing the microstructure pattern and improving its wettability. Therefore, micropatterned ceramic-CNT composites are a potentially attractive substrate for industrial applications of pool boiling.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-09
Language
English
Article Type
Article
Citation

ACS APPLIED NANO MATERIALS, v.2, no.9, pp.5538 - 5545

ISSN
2574-0970
DOI
10.1021/acsanm.9b01116
URI
http://hdl.handle.net/10203/269059
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
000488423900023.pdf(5.13 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0