Utilization of calcium carbide residue using granulated blast furnace slag

Cited 17 time in webofscience Cited 10 time in scopus
  • Hit : 767
  • Download : 166
DC FieldValueLanguage
dc.contributor.authorSeo, Joonhoko
dc.contributor.authorPark, Sol Moiko
dc.contributor.authorYoon, Hyun Noko
dc.contributor.authorJang, Jeong Gookko
dc.contributor.authorKim, Seon Hyeokko
dc.contributor.authorLee, Haeng-Kiko
dc.date.accessioned2019-12-13T07:27:04Z-
dc.date.available2019-12-13T07:27:04Z-
dc.date.created2019-11-29-
dc.date.created2019-11-29-
dc.date.created2019-11-29-
dc.date.created2019-11-29-
dc.date.issued2019-10-
dc.identifier.citationMATERIALS, v.12, no.21, pp.3511-
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/10203/268937-
dc.description.abstractThe solidification and stabilization of calcium carbide residue (CCR) using granulated blast furnace slag was investigated in this study. CCR binding in hydrated slag was explored by X-ray diffraction, 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and thermodynamic calculations. Mercury intrusion porosimetry and and compressive strength tests assessed the microstructure and mechanical properties of the mixtures of slag and CCR. C-A-S-H gel, ettringite, hemicarbonate, and hydrotalcite were identified as the main phases in the mixture of slag and CCR. The maximum CCR uptake by slag and the highest volume of precipitated solid phases were reached when CCR loading in slag is 7.5% by mass of slag, according to the thermodynamic prediction. This feature is also experimentally observed in the microstructure, which showed an increase in the pore volume at higher CCR loading.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleUtilization of calcium carbide residue using granulated blast furnace slag-
dc.typeArticle-
dc.identifier.wosid000502798800052-
dc.identifier.scopusid2-s2.0-85074649207-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue21-
dc.citation.beginningpage3511-
dc.citation.publicationnameMATERIALS-
dc.identifier.doi10.3390/ma12213511-
dc.contributor.localauthorLee, Haeng-Ki-
dc.contributor.nonIdAuthorJang, Jeong Gook-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorslag-
dc.subject.keywordAuthorcalcium carbide residue-
dc.subject.keywordAuthorsolidification-
dc.subject.keywordAuthorstabilization-
dc.subject.keywordAuthorcementitious material-
dc.subject.keywordAuthorcharacterization-
dc.subject.keywordPlusPORTLAND-CEMENT-
dc.subject.keywordPlusFLY-ASH-
dc.subject.keywordPlusBINDER GEL-
dc.subject.keywordPlusWASTE-
dc.subject.keywordPlusCARBONATION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusPASTES-
dc.subject.keywordPlusSI-29-
dc.subject.keywordPlusSOLIDIFICATION/STABILIZATION-
dc.subject.keywordPlusMICROSTRUCTURE-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0