Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes.

Cited 5 time in webofscience Cited 5 time in scopus
  • Hit : 495
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYoon, Nanyoungko
dc.contributor.authorDadson, Keithko
dc.contributor.authorDang, Thanhko
dc.contributor.authorChu, Teresako
dc.contributor.authorNoskovicova, Ninako
dc.contributor.authorHinz, Borisko
dc.contributor.authorRaignault, Adelineko
dc.contributor.authorThorin, Ericko
dc.contributor.authorKim, Seunggyuko
dc.contributor.authorJeon, Jessie S.ko
dc.contributor.authorJonkman, Jamesko
dc.contributor.authorMcKee, Trevor D.ko
dc.contributor.authorGrant, Justinko
dc.contributor.authorPeterson, Jeffrey D.ko
dc.contributor.authorKelly, Scott P.ko
dc.contributor.authorSweeney, Garyko
dc.date.accessioned2019-12-13T07:21:14Z-
dc.date.available2019-12-13T07:21:14Z-
dc.date.created2019-12-02-
dc.date.created2019-12-02-
dc.date.issued2019-11-
dc.identifier.citationAMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, v.317, no.5, pp.E760 - E772-
dc.identifier.issn0193-1849-
dc.identifier.urihttp://hdl.handle.net/10203/268852-
dc.description.abstractAdiponectin, a highly abundant polypeptide hormone in plasma, plays an important role in the regulation of energy metabolism in a wide variety of tissues, as well as providing important beneficial effects in diabetes, inflammation, and cardiovascular disease. To act on target tissues, adiponectin must move from the circulation to the interstitial space, suggesting that vascular permeability plays an important role in regulating adiponectin action. To test this hypothesis, fluorescently labeled adiponectin was used to monitor its biodistribution in mice with streptozotocin-induced diabetes (STZD). Adiponectin was, indeed, found to have increased sequestration in the highly fenestrated liver and other tissues within 90 min in STZD mice. In addition, increased myocardial adiponectin was detected and confirmed using computed tomography (CT) coregistration. This provided support of adiponectin delivery to affected cardiac tissue as a cardioprotective mechanism. Higher adiponectin content in the STZD heart tissues was further examined by ex vivo fluorescence molecular tomography (FMT) imaging, immunohistochemistry, and Western blot analysis. In vitro mechanistic studies using an endothelial monolayer on inserts and three-dimensional microvascular networks on microfluidic chips further confirmed that adiponectin flux was increased by high glucose. However, in the in vitro model and mouse heart tissue, high glucose levels did not change adiponectin receptor levels. An examination of the tight junction (TJ) complex revealed a decrease in the TJ protein claudin (CLDN)-7 in high glucose-treated endothelial cells, and the functional significance of this change was underscored by increased endothelium permeability upon siRNA-mediated knockdown of CLDN-7. Our data support the idea that glucose-induced effects on permeability of the vascular endothelium contribute to the actions of adiponectin by regulating its transendothelial movement from blood to the interstitial space. These observations are physiologically significant and critical when considering ways to harness the therapeutic potential of adiponectin for diabetes.-
dc.languageEnglish-
dc.publisherAMER PHYSIOLOGICAL SOC-
dc.titleTracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes.-
dc.typeArticle-
dc.identifier.wosid000495862500004-
dc.identifier.scopusid2-s2.0-85074117747-
dc.type.rimsART-
dc.citation.volume317-
dc.citation.issue5-
dc.citation.beginningpageE760-
dc.citation.endingpageE772-
dc.citation.publicationnameAMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM-
dc.identifier.doi10.1152/ajpendo.00564.2018-
dc.contributor.localauthorJeon, Jessie S.-
dc.contributor.nonIdAuthorYoon, Nanyoung-
dc.contributor.nonIdAuthorDadson, Keith-
dc.contributor.nonIdAuthorDang, Thanh-
dc.contributor.nonIdAuthorChu, Teresa-
dc.contributor.nonIdAuthorNoskovicova, Nina-
dc.contributor.nonIdAuthorHinz, Boris-
dc.contributor.nonIdAuthorRaignault, Adeline-
dc.contributor.nonIdAuthorThorin, Eric-
dc.contributor.nonIdAuthorJonkman, James-
dc.contributor.nonIdAuthorMcKee, Trevor D.-
dc.contributor.nonIdAuthorGrant, Justin-
dc.contributor.nonIdAuthorPeterson, Jeffrey D.-
dc.contributor.nonIdAuthorKelly, Scott P.-
dc.contributor.nonIdAuthorSweeney, Gary-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthoradiponectin-
dc.subject.keywordAuthordiabetes-
dc.subject.keywordAuthorendothelial-
dc.subject.keywordAuthorfluorescence molecular tomography-
dc.subject.keywordAuthorheart-
dc.subject.keywordAuthorvascular permeability-
dc.subject.keywordPlusMICROVASCULAR NETWORKS-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusENDOTHELIUM-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusADIPOKINES-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusCLAUDINS-
dc.subject.keywordPlusGLUCOSE-
dc.subject.keywordPlusBARRIER-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0