Sparse Scene Recovery for High-Resolution Automobile FMCW SAR via Scaled Compressed Sensing

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 76
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJung, Dae-Hwanko
dc.contributor.authorKim, Chul-Kiko
dc.contributor.authorKang, Hyun-Seongko
dc.contributor.authorPark, Junhyeongko
dc.contributor.authorPark, Seong-Ookko
dc.date.accessioned2019-12-13T01:23:50Z-
dc.date.available2019-12-13T01:23:50Z-
dc.date.created2019-11-26-
dc.date.created2019-11-26-
dc.date.created2019-11-26-
dc.date.created2019-11-26-
dc.date.issued2019-12-
dc.identifier.citationIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, v.57, no.12, pp.10136 - 10146-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/10203/268792-
dc.description.abstractThis paper introduces a sparse scene reconstruction algorithm for automobile frequency-modulated continuous-wave synthetic aperture radar (FMCW SAR) through scaled compressed sensing (CS). An FMCW radar leads to low manufacturing cost, compact realization, and low transmission power. An automobile SAR is more economical and easier to implement than typical SAR platforms (e.g., satellites and aircraft). We apply CS to randomly subsampled raw data of automobile FMCW SAR for sparse reconstruction. We exploit the fact that the velocity of an automobile is significantly lower than that of the SAR platforms, which leads to a vastly narrow bandwidth of an azimuth-matched filter in the azimuth compression of the range-Doppler algorithm (RDA). Low-frequency azimuth data have a fundamental effect on azimuth compression. We propose a new reconstruction scheme, scaled CS, which specializes in low-frequency information recovery for automobile SAR. The scheme is based on basis pursuit denoising (BPDN). A Ku-band FMCW SAR system is developed to verify the performance of the proposed algorithm. We mount our system on an automobile and collect FMCW SAR raw data in the stripmap mode with a van maintained a constant speed on a highway. The proposed reconstruction algorithm shows improved recovery performance for automobile FMCW SAR, which is validated by processing a high-resolution real SAR image.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleSparse Scene Recovery for High-Resolution Automobile FMCW SAR via Scaled Compressed Sensing-
dc.typeArticle-
dc.identifier.wosid000505701800047-
dc.identifier.scopusid2-s2.0-85074291934-
dc.type.rimsART-
dc.citation.volume57-
dc.citation.issue12-
dc.citation.beginningpage10136-
dc.citation.endingpage10146-
dc.citation.publicationnameIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING-
dc.identifier.doi10.1109/TGRS.2019.2931626-
dc.contributor.localauthorPark, Seong-Ook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAutomobile synthetic aperture radar (SAR)-
dc.subject.keywordAuthorcompressed sensing (CS)-
dc.subject.keywordAuthorfrequency-modulated continuous-wave (FMCW) radar-
dc.subject.keywordAuthorSAR-
dc.subject.keywordAuthorsparse reconstruction-
dc.subject.keywordPlusMOTION COMPENSATION-
dc.subject.keywordPlusSYNTHESIZER-
dc.subject.keywordPlusALGORITHM-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0