Associations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 356
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNg, Chris Fook Shengko
dc.contributor.authorHashizume, Masahiroko
dc.contributor.authorObase, Yasushiko
dc.contributor.authorDoi, Masatakako
dc.contributor.authorTamura, Keiko
dc.contributor.authorTomari, Shinyako
dc.contributor.authorKawano, Tetsuyako
dc.contributor.authorFukushima, Chizuko
dc.contributor.authorMatsuse, Hirotoko
dc.contributor.authorChung, Yeonseungko
dc.contributor.authorKim, Yoonheeko
dc.contributor.authorKunimitsu, Kenichiko
dc.contributor.authorKohno, Shigeruko
dc.contributor.authorMukae, Hiroshiko
dc.date.accessioned2019-09-09T10:20:02Z-
dc.date.available2019-09-09T10:20:02Z-
dc.date.created2019-09-09-
dc.date.created2019-09-09-
dc.date.issued2019-09-
dc.identifier.citationENVIRONMENTAL POLLUTION, v.252, pp.599 - 606-
dc.identifier.issn0269-7491-
dc.identifier.urihttp://hdl.handle.net/10203/267408-
dc.description.abstractPrevious studies have linked ambient PM2.5 to decreased pulmonary function, but the influence of specific chemical elements and emission sources on the severe asthmatic is not well understood. We examined the mass, chemical constituents, and sources of PM2.5 for short-term associations with the pulmonary function of adults with severe asthma in a low air pollution environment in urban Nagasaki, Japan. We recruited 35 asthmatic adults and obtained the daily record of morning peak expiratory flow (PEF) in spring 2014–2016. PM2.5 filters were extracted from an air quality monitoring station (178 days) and measured for 27 chemical elements. Source apportionment was performed using Positive Matrix Factorization (PMF). We fitted generalized linear model with generalized estimating equation (GEE) method to estimate changes in PEF (from personal monthly maximum) and odds of severe respiratory deterioration (first ≥ 15% PEF reduction within a 1-week interval) associated with mass, constituents, and sources of PM2.5, with adjustment for temperature and relative humidity. Constituent sulfate (SO42−) and PM2.5 from oil combustion and traffic were associated with reduced PEF. An interquartile range (IQR) increase in SO42− (3.7 μg/m3, average lags 0–1) was associated with a decrease of 0.38% (95% confidence interval = −0.75% to −0.001%). An IQR increase in oil combustion and traffic-sourced PM2.5 (2.64 μg/m3, lag 1) was associated with a decrease of 0.33% (−0.62% to −0.002%). We found a larger PEF decrease associated with PM2.5 from dust/soil on Asian Dust days. There was no evidence linking total mass and metals to reduced pulmonary function. The ventilatory capacity of adults with severe asthma is susceptible to specific constituents/sources of PM2.5 such as sulfate and oil combustion and traffic despite active self-management of asthma and low air pollution levels in the study location.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleAssociations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan-
dc.typeArticle-
dc.identifier.wosid000483005500063-
dc.identifier.scopusid2-s2.0-85066955212-
dc.type.rimsART-
dc.citation.volume252-
dc.citation.beginningpage599-
dc.citation.endingpage606-
dc.citation.publicationnameENVIRONMENTAL POLLUTION-
dc.identifier.doi10.1016/j.envpol.2019.05.117-
dc.contributor.localauthorChung, Yeonseung-
dc.contributor.nonIdAuthorNg, Chris Fook Sheng-
dc.contributor.nonIdAuthorHashizume, Masahiro-
dc.contributor.nonIdAuthorObase, Yasushi-
dc.contributor.nonIdAuthorDoi, Masataka-
dc.contributor.nonIdAuthorTamura, Kei-
dc.contributor.nonIdAuthorTomari, Shinya-
dc.contributor.nonIdAuthorKawano, Tetsuya-
dc.contributor.nonIdAuthorFukushima, Chizu-
dc.contributor.nonIdAuthorMatsuse, Hiroto-
dc.contributor.nonIdAuthorKim, Yoonhee-
dc.contributor.nonIdAuthorKunimitsu, Kenichi-
dc.contributor.nonIdAuthorKohno, Shigeru-
dc.contributor.nonIdAuthorMukae, Hiroshi-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorParticulate matter-
dc.subject.keywordAuthorSulfate-
dc.subject.keywordAuthorOil combustion &amp-
dc.subject.keywordAuthortraffic-
dc.subject.keywordAuthorDust-
dc.subject.keywordAuthorSpirometry-
dc.subject.keywordAuthorAsthma-
dc.subject.keywordPlusPEAK EXPIRATORY FLOW-
dc.subject.keywordPlusAIRBORNE PARTICULATE MATTER-
dc.subject.keywordPlusFINE PARTICULATE-
dc.subject.keywordPlusPULMONARY-FUNCTION-
dc.subject.keywordPlusSOURCE APPORTIONMENT-
dc.subject.keywordPlusHOSPITAL ADMISSIONS-
dc.subject.keywordPlusHEALTHY-ADULTS-
dc.subject.keywordPlusASIAN DUST-
dc.subject.keywordPlusCONSTITUENTS-
dc.subject.keywordPlusEXPOSURE-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0