Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 173
  • Download : 0
Background: Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imagery movement of body parts (e.g., left or right hands) to movement directions Cleft or right directional movement of a machine or cursor) are less intuitive and less convenient due to the complex training procedures. Thus, direct decoding methods for detecting user intention about movement directions are urgently needed. Methods: Here, we describe a novel direct decoding method for user intention about the movement directions using the echo state network and Gaussian readouts. Importantly parameters in the network were optimized using the genetic algorithm method to achieve better decoding performance. We tested the decoding performance of this method with four healthy subjects and an inexpensive wireless EEG system containing 14 channels and then compared the performance outcome with that of a conventional machine teaming method. Results: We showed that this decoding method successfully classified eight directions of intended movement (approximately 95% of an accuracy). Conclusions: We suggest that the echo state network and Gaussian readouts can be a useful decoding method to directly read user intention of movement directions even using an inexpensive and portable EEG system.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-07
Language
English
Article Type
Article
Citation

COMPUTERS IN BIOLOGY AND MEDICINE, v.110, pp.254 - 264

ISSN
0010-4825
DOI
10.1016/j.compbiomed.2019.05.024
URI
http://hdl.handle.net/10203/266089
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0