Microfluidic designing of functional microcapsules for biological and sensor applications생물학적 응용 및 센서 응용을 위한 미세유체시스템 기반의 기능성 캡슐 설계

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 364
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKim, Shin-Hyun-
dc.contributor.advisor김신현-
dc.contributor.authorLee, Tae Yong-
dc.date.accessioned2019-08-22T02:44:54Z-
dc.date.available2019-08-22T02:44:54Z-
dc.date.issued2019-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=842127&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/264847-
dc.description학위논문(박사) - 한국과학기술원 : 생명화학공학과, 2019.2,[vi, 93 p. :]-
dc.description.abstractRecent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core–shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colors, and many other uses. However, we are still in the infancy stage for the functionalization of microcapsules and their use. The high flexibility of microfluidic technologies will provide unlimited opportunities for a wide range of conventional and unprecedented applications of microcapsules. For example, the microcapsule sensors can be further designed to have a membrane that actively regulates the material transport and a core that emits NIR signals in response to specific biomolecules. Such a microcapsule could be implanted in patients through injection to monitor the in vivo environment without the need for surgery. Furthermore, artificial cells that behave in the same manner to natural cells in many aspects could be implemented. Artificial cells would produce and secrete beneficial chemicals or proteins in the manner by which they are programmed. The only way to design and produce such elaborate micro-compartments is to use microfluidics and its high controllability over size, shape, and composition of multiple emulsions and high reproducibility.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectmicrofluidics▼asoft matter▼amicrocapsule▼adrug delivery▼acell encapsulation▼acolorimetric sensor-
dc.subject미세유체소자▼a연성소재▼a마이크로캡슐▼a약물 전달▼a세포 캡슐화▼a비색계 센서-
dc.titleMicrofluidic designing of functional microcapsules for biological and sensor applications-
dc.title.alternative생물학적 응용 및 센서 응용을 위한 미세유체시스템 기반의 기능성 캡슐 설계-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :생명화학공학과,-
dc.contributor.alternativeauthor이태용-
Appears in Collection
CBE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0