Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 114
  • Download : 0
We experimentally investigate the nonlinear dynamics of a thermoacoustically self-excited aero-engine combustion system featuring a turbulent swirling liquid-fueled diffusion flame in a variable-length combustor. We focus on the steady-state dynamics via simultaneous measurements of the acoustic pressure in the combustor and the heat release rate (HRR) from the flame. When the combustor length is increased following the onset of thermoacoustic instability, we find that the pressure signal transitions from a period-1 limit cycle to chaos, whereas the HRR signal remains chaotic owing to the presence of an intrinsic hydrodynamic mode in the flame. When the hydrodynamic mode is filtered out of the data, we find that the pressure and HRR signals are in generalized synchronization. However, when the hydrodynamic mode is retained in the data, we find that the pressure and HRR signals are either weakly phase synchronized or desynchronized. This study has two main contributions: (i) it shows that a liquid-fueled diffusion-flame combustor can exhibit dynamics as complex as those of its gaseous-fueled premixed-flame counterparts and (ii) it highlights the need to be exceptionally careful when selecting a diagnostic signal from which to calculate nonlinear measures of self-excited thermoacoustic oscillations, because our experiments show that the pressure and HRR signals can be desynchronized by the presence of a hydrodynamic mode in the flame at a frequency different from that of the dominant thermoacoustic mode.
Publisher
AMER INST PHYSICS
Issue Date
2019-05
Language
English
Article Type
Article
Citation

CHAOS, v.29, no.5, pp.053124

ISSN
1054-1500
DOI
10.1063/1.5088735
URI
http://hdl.handle.net/10203/263719
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0