Design of the centrifugal fan of a belt-driven starter generator with reduced flow noise

Cited 10 time in webofscience Cited 8 time in scopus
  • Hit : 395
  • Download : 0
Large eddy simulations based on the explicit algebraic subgrid-scale stress model were carried out to predict the flow-induced noise generated on the centrifugal fan of a belt-driven starter generator using Lighthill's analogy and the method of Ffowcs Williams and Hawkings. The surrounding air was approximated by an ideal gas at fixed room temperature (T-in = 300 K), and the rotating velocity of the fan was considered to be 6000 rpm. The blade array angles were designed using the modulation method, and a large blade curvature was adopted. We identified several centrifugal fan design parameters that could minimize the flow-induced noise while also minimizing fan efficiency losses. Three design parameters: the top serrated edge (theta(t)), the step leading edge (0.52 H-b) and the tail edge (d(b) and r(b)), played a critical role in preventing vortex generation and collision, significantly weakening the surface pressure fluctuations on the blade. The maximum sound pressure level at 800 Hz at a specific location was reduced by 5.5 dB (at the top serrated edge) and 6.8 dB (at the step leading edge) relative to the baseline case. The sound power, calculated over a hemisphere surface of 950 mm, was reduced by 77.3% (at the top serrated edge) and 61.0% (at the step leading edge) relative to the baseline whereas the mass flow rates were reduced by 5.2% and 10.6%, respectively. Experiments were performed using the optimally designed fan in a semi-anechoic chamber. The predicted sound pressure level and frequency were in good agreement with the experimentally measured values.
Publisher
ELSEVIER SCIENCE INC
Issue Date
2019-04
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, v.76, pp.72 - 84

ISSN
0142-727X
DOI
10.1016/j.ijheatfluidflow.2019.01.016
URI
http://hdl.handle.net/10203/262757
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0