A High-Diversity Transceiver Design for MISO Broadcast Channels

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 150
  • Download : 0
In this paper, the outage behavior and diversity order of the mixture transceiver architecture for multiple-input single-output broadcast channels are analyzed. The mixture scheme groups users with closely-aligned channels and applies superposition coding and successive interference cancellation decoding to each group composed of users with closely-aligned channels, while applying zero-forcing beamforming across semi-orthogonal user groups. In order to enable such analysis, closed-form lower bounds on the achievable rates of a general multiple-input single-output broadcast channel with superposition coding and successive interference cancellation are newly derived. By employing channel-adaptive user grouping and proper power allocation, which ensures that the channel subspaces of user groups have an angle larger than a certain threshold, it is shown that the mixture transceiver architecture achieves full diversity order in multiple-input single-output broadcast channels and opportunistically increases the multiplexing gain while achieving full diversity order. Furthermore, the achieved full diversity order is the same as that of the single-user maximal ratio transmit beamforming. Hence, the mixture scheme can provide reliable communication under channel fading for ultra-reliable low latency communication. The numerical results validate our analysis and show the outage superiority of the mixture scheme over conventional transceiver designs for multiple-input single-output broadcast channels.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2019-05
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, v.18, no.5, pp.2591 - 2606

ISSN
1536-1276
DOI
10.1109/TWC.2019.2905609
URI
http://hdl.handle.net/10203/262246
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0