Semi-classical standing waves for nonlinear Schrodinger equations at structurally stable critical points of the potential

Cited 29 time in webofscience Cited 0 time in scopus
  • Hit : 209
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorByeon, Jaeyoungko
dc.contributor.authorTanaka, Kazunagako
dc.date.accessioned2019-04-15T15:51:03Z-
dc.date.available2019-04-15T15:51:03Z-
dc.date.created2013-07-24-
dc.date.created2013-07-24-
dc.date.issued2013-
dc.identifier.citationJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, v.15, no.5, pp.1859 - 1899-
dc.identifier.issn1435-9855-
dc.identifier.urihttp://hdl.handle.net/10203/255309-
dc.description.abstractWe consider a singularly perturbed elliptic equation epsilon(2)Delta u - V(x)u + f(u) = 0, u(x) > 0 on R-N, lim(vertical bar x vertical bar ->infinity) u(x) = 0, where V(x) > 0 for any x is an element of R-N. The singularly perturbed problem has corresponding limiting problems Delta U - cU + f(U) = 0, U(x) > 0 on R-N, lim(vertical bar x vertical bar ->infinity) u(x) = 0, c > 0. Berestycki-Lions [3] found almost necessary and sufficient conditions on the nonlinearity f for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of the potential V under possibly general conditions on f. In this paper, we prove that under the optimal conditions of Berestycki-Lions on f is an element of C-1, there exists a solution concentrating around topologically stable positive critical points of V, whose critical values are characterized by minimax methods.-
dc.languageEnglish-
dc.publisherEUROPEAN MATHEMATICAL SOC-
dc.titleSemi-classical standing waves for nonlinear Schrodinger equations at structurally stable critical points of the potential-
dc.typeArticle-
dc.identifier.wosid000322507200010-
dc.identifier.scopusid2-s2.0-84880880300-
dc.type.rimsART-
dc.citation.volume15-
dc.citation.issue5-
dc.citation.beginningpage1859-
dc.citation.endingpage1899-
dc.citation.publicationnameJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY-
dc.identifier.doi10.4171/JEMS/407-
dc.contributor.localauthorByeon, Jaeyoung-
dc.contributor.nonIdAuthorTanaka, Kazunaga-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSCALAR FIELD-EQUATIONS-
dc.subject.keywordPlusGENERAL NONLINEARITY-
dc.subject.keywordPlusBOUND-STATES-
dc.subject.keywordPlusELLIPTIC-EQUATIONS-
dc.subject.keywordPlusPOSITIVE SOLUTIONS-
dc.subject.keywordPlusR-N-
dc.subject.keywordPlusEXISTENCE-
dc.subject.keywordPlusMANIFOLDS-
dc.subject.keywordPlusPRINCIPLE-
dc.subject.keywordPlusSYMMETRY-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0