We consider the nonlinear elliptic problem -Delta u = u(p) in Omega(R), u > 0 in Omega(R), u = 0 in Omega(R) where p > 1 and Omega(R) = {x is an element of R-N: R < vertical bar x vertical bar < R + 1} with N >= 3. It is known that as R -> infinity, the number of nonequivalent solutions of the above problem goes to infinity when p is an element of (N + 2)/(N - 2)), N >= 3. Here we prove the same phenomenon for any p > 1 by finding O (N - 1)-symmetric clustering bump solutions which concentrate near the set {(x(1), ... , x(N)) is an element of Omega(R): x(N) = 0} for large R > 0. (C) 2013 Elsevier Inc. All rights reserved.

- Publisher
- ACADEMIC PRESS INC ELSEVIER SCIENCE

- Issue Date
- 2013-11

- Language
- English

- Article Type
- Article

- Citation
JOURNAL OF FUNCTIONAL ANALYSIS, v.265, no.9, pp.1955 - 1980

- ISSN
- 0022-1236

- Appears in Collection
- MA-Journal Papers(저널논문)

- Files in This Item
- There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.