Explicit Channel Coordination via Cross-technology Communication

Cited 38 time in webofscience Cited 38 time in scopus
  • Hit : 168
  • Download : 0
Under significant coexistence in the ISM band, the impact of cross-technology interference (CTI) has become a major threat to low-power IoT. This paper presents ECC that uniquely enables explicit channel coordination among heterogeneities via cross-technology communication (CTC) introduced in the latest studies, while maintaining full compatibility to commodity devices. Unlike any implicit coordination designs adopting statistical models to probabilistically predict white spaces, ECC generates the white space using WiFi CTS, which is then explicitly notified to ZigBee through CTC for immediate use. Technical highlight of ECC lies in ensuring ZigBee communication under CTI, without disrupting WiFi operation. This is effectively achieved by the dynamic adjustment of CTS duration with respect to traffic amount and spectrum availability, which essentially enables ECC to be generally applied to various scenarios without prior knowledge. Lastly, ECC significantly reduces delay and energy in low duty cycled ZigBee, by waking them up upon channel availability (via CTC). We evaluate ECC on commercial platforms: Atheros AR2425 WiFi card and TelosB motes. Experiment results show that ECC achieves 1.8x ZigBee packet reception ratio, and cuts down delay and energy by 98.6% and 51% under the low duty cycle.
Publisher
Association for Computing Machinery, Inc
Issue Date
2018-06-13
Language
English
Citation

ACM International Conference on Mobile Systems, Applications, and Services (ACM MobiSys), pp.178 - 190

DOI
10.1145/3210240.3210318
URI
http://hdl.handle.net/10203/251572
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 38 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0