A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 530
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Se-Wonko
dc.contributor.authorRival, Xavierko
dc.contributor.authorRyu, Sukyoungko
dc.date.accessioned2018-10-19T00:31:25Z-
dc.date.available2018-10-19T00:31:25Z-
dc.date.created2018-09-27-
dc.date.created2018-09-27-
dc.date.issued2018-08-
dc.identifier.citationACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, v.40, no.3-
dc.identifier.issn0164-0925-
dc.identifier.urihttp://hdl.handle.net/10203/245914-
dc.description.abstractProgram analyses often utilize various forms of sensitivity such as context sensitivity, call-site sensitivity, and object sensitivity. These techniques all allow for more precise program analyses, that are able to compute more precise program invariants, and to verify stronger properties. Despite the fact that sensitivity techniques are now part of the standard toolkit of static analyses designers and implementers, no comprehensive frameworks allow the description of all common forms of sensitivity. As a consequence, the soundness proofs of static analysis tools involving sensitivity often rely on ad hoc formalization, which are not always carried out in an abstract interpretation framework. Moreover, this also means that opportunities to identify similarities between analysis techniques to better improve abstractions or to tune static analysis tools can easily be missed. In this article, we present and formalize a framework for the description of sensitivity in static analysis. Our framework is based on a powerful abstract domain construction, and utilizes reduced cardinal power to tie basic abstract predicates to the properties analyses are sensitive to. We formalize this abstraction, and the main abstract operations that are needed to turn it into a generic abstract domain construction. We demonstrate that our approach can allow for a more precise description of program states, and that it can also describe a large set of sensitivity techniques, both when sensitivity criteria are static (known before the analysis) or dynamic (inferred as part of the analysis), and sensitive analysis tuning parameters. Last, we show that sensitivity techniques used in state-of-the-art static analysis tools can be described in our framework.-
dc.languageEnglish-
dc.publisherASSOC COMPUTING MACHINERY-
dc.subjectDOMAINS-
dc.subjectDESIGN-
dc.titleA Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework-
dc.typeArticle-
dc.identifier.wosid000444694800006-
dc.identifier.scopusid2-s2.0-85053391621-
dc.type.rimsART-
dc.citation.volume40-
dc.citation.issue3-
dc.citation.publicationnameACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS-
dc.identifier.doi10.1145/3230624-
dc.contributor.localauthorRyu, Sukyoung-
dc.contributor.nonIdAuthorKim, Se-Won-
dc.contributor.nonIdAuthorRival, Xavier-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAbstract interpretation-
dc.subject.keywordAuthorprogram analysis-
dc.subject.keywordAuthoranalysis sensitivity-
dc.subject.keywordAuthoranalysis framework-
dc.subject.keywordPlusDOMAINS-
dc.subject.keywordPlusDESIGN-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0