Adaptive single-loop reliability-based design optimization and post optimization using constraint boundary sampling

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 178
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Sang-Hyeonko
dc.contributor.authorLee, Gwangwonko
dc.contributor.authorLee, Ikjinko
dc.date.accessioned2018-08-20T07:50:27Z-
dc.date.available2018-08-20T07:50:27Z-
dc.date.created2018-07-29-
dc.date.created2018-07-29-
dc.date.issued2018-07-
dc.identifier.citationJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, v.32, no.7, pp.3249 - 3262-
dc.identifier.issn1738-494X-
dc.identifier.urihttp://hdl.handle.net/10203/244880-
dc.description.abstractThe single-loop method (SLM) for reliability-based design optimization (RBDO) can be inaccurate when constraint functions are highly nonlinear because it uses gradient information calculated at the approximated most probable point (MPP) of the previous iteration. To overcome this limitation, this paper presents a new adaptive SLM (ASLM) that can automatically select the gradient at the approximate MPP of the previous iteration or the design point of the current iteration. If the design movement is large, the normalized gradient is calculated at the current design point, and the approximate MPP is calculated using the mean value method, and if small, the gradient is calculated at the approximate MPP of the previous iteration. In this study, a post optimization (PO) technique using constraint boundary sampling (CBS) is also proposed to improve the accuracy of ASLM. In the proposed method, ASLM is performed first, and then PO is applied to find a more accurate RBDO optimum using the Kriging model generated by samples accumulated during ASLM and sequentially added by CBS when the Kriging model is not accurate enough. Numerical studies show that the proposed ASLM is more efficient than the existing RBDO methods and the proposed PO improves its accuracy.-
dc.languageEnglish-
dc.publisherKOREAN SOC MECHANICAL ENGINEERS-
dc.subjectDIMENSION-REDUCTION METHOD-
dc.subjectPERFORMANCE-MEASURE APPROACH-
dc.subjectSTOCHASTIC SENSITIVITY-ANALYSIS-
dc.subjectSAFETY INDEX APPROACH-
dc.subjectMEAN-VALUE METHOD-
dc.subjectSEQUENTIAL OPTIMIZATION-
dc.subjectSTRUCTURAL RELIABILITY-
dc.subjectPROBABLE POINT-
dc.subjectDECOMPOSITION-
dc.subjectIMPROVEMENT-
dc.titleAdaptive single-loop reliability-based design optimization and post optimization using constraint boundary sampling-
dc.typeArticle-
dc.identifier.wosid000439063800029-
dc.identifier.scopusid2-s2.0-85050156022-
dc.type.rimsART-
dc.citation.volume32-
dc.citation.issue7-
dc.citation.beginningpage3249-
dc.citation.endingpage3262-
dc.citation.publicationnameJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY-
dc.identifier.doi10.1007/s12206-018-0627-5-
dc.contributor.localauthorLee, Ikjin-
dc.contributor.nonIdAuthorLee, Gwangwon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorReliability-based design optimization-
dc.subject.keywordAuthorAdaptive single-loop method-
dc.subject.keywordAuthorPost optimization-
dc.subject.keywordAuthorConstraint boundary sampling-
dc.subject.keywordPlusDIMENSION-REDUCTION METHOD-
dc.subject.keywordPlusPERFORMANCE-MEASURE APPROACH-
dc.subject.keywordPlusSTOCHASTIC SENSITIVITY-ANALYSIS-
dc.subject.keywordPlusSAFETY INDEX APPROACH-
dc.subject.keywordPlusMEAN-VALUE METHOD-
dc.subject.keywordPlusSEQUENTIAL OPTIMIZATION-
dc.subject.keywordPlusSTRUCTURAL RELIABILITY-
dc.subject.keywordPlusPROBABLE POINT-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusIMPROVEMENT-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0