Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 523
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCheong, Jun Youngko
dc.contributor.authorKoo, Won-Taeko
dc.contributor.authorKim, Chanhoonko
dc.contributor.authorJung, Ji-Wonko
dc.contributor.authorKim, Il-Dooko
dc.date.accessioned2018-07-24T02:58:04Z-
dc.date.available2018-07-24T02:58:04Z-
dc.date.created2018-07-16-
dc.date.created2018-07-16-
dc.date.issued2018-06-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.10, no.24, pp.20540 - 20549-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/244546-
dc.description.abstractFacile synthesis of rationally designed nano structured electrode materials with high reversible capacity is highly critical to meet ever-increasing demands for lithium-ion batteries. In this work, we employed defect engineering by incorporating metal organic framework (MOF) templates into one-dimensional nanostructures by simple electrospinning and subsequent calcination. The introduction of Co-based zeolite imidazole frameworks (ZIF-67) resulted in abundant oxygen vacancies, which induce not only more active sites for Li storage but also enhanced electrical conductivity. Moreover, abundant mesoporous sites are formed by the decomposition of ZIF-67, which are present both inside and outside the resultant SnO2-Co3O4 nanofibers (NFs). Attributed to the creation of vacancy sites along with the synergistic effects of SnO2 and Co3O4, SnO2-Co3O4 NFs exhibit an excellent reversible capacity for 300 cycles (1287 mA h g(-1) at a current density of SOO mA g(-1)) along with superior rate capabilities and improved initial Coulombic efficiency compared with pristine SnO2 NFs. This is an early report on utilizing MOF structures as the defect formation platform into one-dimensional nanostructures, which is expected to result in superior electrochemical performances required for advanced electrodes.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectANODE MATERIALS-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectSTORAGE PERFORMANCE-
dc.subjectSNO2 NANOCRYSTALS-
dc.subjectENERGY-STORAGE-
dc.subjectHIGH-CAPACITY-
dc.subjectLI-
dc.subjectNANOTUBES-
dc.subjectHYBRID-
dc.titleFeasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications-
dc.typeArticle-
dc.identifier.wosid000436211500036-
dc.identifier.scopusid2-s2.0-85048139726-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.issue24-
dc.citation.beginningpage20540-
dc.citation.endingpage20549-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.8b04968-
dc.contributor.localauthorKim, Il-Doo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthornanofibers-
dc.subject.keywordAuthormetal-organic frameworks-
dc.subject.keywordAuthoranodes-
dc.subject.keywordAuthorLi ion batteries-
dc.subject.keywordAuthorSnO2-
dc.subject.keywordAuthorCo3O4-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusSTORAGE PERFORMANCE-
dc.subject.keywordPlusSNO2 NANOCRYSTALS-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusHYBRID-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0