A parametrization of $\theta$-congruent numbers with many prime factors and with prescribed prime factors

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 188
  • Download : 0
Let theta be a real number such that 0 < theta < pi and cos theta is an element of Q. For each positive integer n, we give a parametrization S-n (alpha) whose square-free part N-n (alpha) for each negative integer alpha is a theta-congruent number with many prime factors including any given primes (especially, at least n prime factors that are guaranteed to appear) by showing the positivity of the rank of the corresponding theta-congruent number elliptic curve over Q. Especially, we show that if a given odd prime p > 2n is near 2n, then p appears as a factor of N-n(alpha) very often as a varies all over negative integers by proving that the probability of the set of all negative integers alpha such that p divides N-n (alpha) is 2n+1/p+1. (C) 2018 Elsevier Inc. All rights reserved.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2018-06
Language
English
Article Type
Article
Citation

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.462, no.1, pp.407 - 427

ISSN
0022-247X
DOI
10.1016/j.jmaa.2018.01.068
URI
http://hdl.handle.net/10203/244047
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0