Antireflective glass nanoholes on optical lenses

Cited 22 time in webofscience Cited 0 time in scopus
  • Hit : 567
  • Download : 215
DC FieldValueLanguage
dc.contributor.authorLee, Youngseopko
dc.contributor.authorBae, Sang-Inko
dc.contributor.authorEom, Jaehyeonko
dc.contributor.authorSuh, Ho-Cheolko
dc.contributor.authorJeong, Ki-Hunko
dc.date.accessioned2018-06-19T08:29:38Z-
dc.date.available2018-06-19T08:29:38Z-
dc.date.created2018-06-18-
dc.date.created2018-06-18-
dc.date.created2018-06-18-
dc.date.issued2018-05-
dc.identifier.citationOPTICS EXPRESS, v.26, no.11, pp.14786 - 14791-
dc.identifier.issn1094-4087-
dc.identifier.urihttp://hdl.handle.net/10203/242630-
dc.description.abstractAntireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of similar to 4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement-
dc.languageEnglish-
dc.publisherOPTICAL SOC AMER-
dc.titleAntireflective glass nanoholes on optical lenses-
dc.typeArticle-
dc.identifier.wosid000433333700094-
dc.identifier.scopusid2-s2.0-85047599104-
dc.type.rimsART-
dc.citation.volume26-
dc.citation.issue11-
dc.citation.beginningpage14786-
dc.citation.endingpage14791-
dc.citation.publicationnameOPTICS EXPRESS-
dc.identifier.doi10.1364/OE.26.014786-
dc.contributor.localauthorJeong, Ki-Hun-
dc.contributor.nonIdAuthorEom, Jaehyeon-
dc.contributor.nonIdAuthorSuh, Ho-Cheol-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANTIREFLECTION-
dc.subject.keywordPlusBROAD-BAND-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusSILICON SURFACES-
dc.subject.keywordPlusPOLYMER-FILMS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusEFFICIENCY-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
104807.pdf(3.66 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 22 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0