Normal form approach to well-posedness of nonlinear dispersive partial differential equationsNormal Form 접근을 통한 비선형 분산 방정식 해의 존재성과 유일성 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 667
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKwon, Soon Sik-
dc.contributor.advisor권순식-
dc.contributor.authorYoon, Hae Won-
dc.contributor.author윤혜원-
dc.date.accessioned2018-05-23T19:35:45Z-
dc.date.available2018-05-23T19:35:45Z-
dc.date.issued2017-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=718851&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/241913-
dc.description학위논문(박사) - 한국과학기술원 : 수리과학과, 2017.8,[i, 57 p. :]-
dc.description.abstractIn this paper, we investigate how the method of (Poincar$\acute{e}$-Dulac) normal form can be applied to the theory of dispersive partial differential equations. In particular, we prove unconditional well-posedness of canonical dispersive equations on the real line. More precisely, we implement an infinite iteration scheme of normal form reductions to the cubic nonlinear Schr$\ddot{o}$dinger equation (NLS) and the modified Korteweg-de Vries equation (mKdV) on the real line and prove unconditional well-posedness in $H^s(\R)$ with (i) $s\geq\frac 16$ for the cubic NLS and (ii) $s>\frac 14$ for the mKdV. One novelty of this paper is that we present normal form reductions in an abstract form, reducing multilinear estimates of arbitrarily high degrees to successive applications to trilinear localized modulation estimates. In Chapter 1, we briefly introduce the idea of (Poincar$\acute{e}$-Dulac) normal form approach to dispersive equations, and surmmarize some relevant previous researches. In Chapter 2, we establish crucial trilinear estimates (localized modulation estimates) for the cubic NLS and the mKdV. In Chapter 3, we perform an infinite iteration of normal form reductions and derive the normal form equation. We carry out the computation in Chapter 3 at a formal level. In Chapter 4, we justify the formal computation in Chapter 3 and then prove our main result.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subject(Poincar$\acute{e}$-Dulac) Normal form reduction▼aModified KdV equation▼aNonlinear Schr$\ddot{o}dinger equation$▼aUnconditional Well-posedness-
dc.subject(푸앵카레-뒬락) 표준형▼a변형된 콜테베그-데브리스 방정식▼a비선형 슈뢰딩거 방정식▼a해의 존재성▼a(보조 공간에 의존하지 않는) 해의 존재성과 유일성-
dc.titleNormal form approach to well-posedness of nonlinear dispersive partial differential equations-
dc.title.alternativeNormal Form 접근을 통한 비선형 분산 방정식 해의 존재성과 유일성 연구-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :수리과학과,-
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0