Fast Randomized Singular Value Thresholding for Low-Rank Optimization

Cited 56 time in webofscience Cited 0 time in scopus
  • Hit : 547
  • Download : 0
Rank minimization can be converted into tractable surrogate problems, such as Nuclear Norm Minimization (NNM) and Weighted NNM (WNNM). The problems related to NNM, or WNNM, can be solved iteratively by applying a closed-form proximal operator, called Singular Value Thresholding (SVT), or Weighted SVT, but they suffer from high computational cost of Singular Value Decomposition (SVD) at each iteration. We propose a fast and accurate approximation method for SVT, that we call fast randomized SVT (FRSVT), with which we avoid direct computation of SVD. The key idea is to extract an approximate basis for the range of the matrix from its compressed matrix. Given the basis, we compute partial singular values of the original matrix from the small factored matrix. In addition, by developping a range propagation method, our method further speeds up the extraction of approximate basis at each iteration. Our theoretical analysis shows the relationship between the approximation bound of SVD and its effect to NNM via SVT. Along with the analysis, our empirical results quantitatively and qualitatively show that our approximation rarely harms the convergence of the host algorithms. We assess the efficiency and accuracy of the proposed method on various computer vision problems, e.g., subspace clustering, weather artifact removal, and simultaneous multi-image alignment and rectification.
Publisher
IEEE COMPUTER SOC
Issue Date
2018-02
Language
English
Article Type
Article
Keywords

MATRIX COMPLETION; MINIMIZATION; APPROXIMATION; DECOMPOSITION; ALGORITHMS; NORM

Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.40, no.2, pp.376 - 391

ISSN
0162-8828
DOI
10.1109/TPAMI.2017.2677440
URI
http://hdl.handle.net/10203/240091
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 56 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0