Hierarchical Spatially Varying Coefficient Process Model

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 316
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Heeyoungko
dc.contributor.authorLee, Jaehwanko
dc.date.accessioned2018-01-30T05:51:15Z-
dc.date.available2018-01-30T05:51:15Z-
dc.date.created2017-12-04-
dc.date.created2017-12-04-
dc.date.created2017-12-04-
dc.date.issued2017-10-
dc.identifier.citationTECHNOMETRICS, v.59, no.4, pp.521 - 527-
dc.identifier.issn0040-1706-
dc.identifier.urihttp://hdl.handle.net/10203/239493-
dc.description.abstractThe spatially varying coefficient process model is a nonstationary approach to explaining spatial heterogen-eity by allowing coefficients to vary across space. In this article, we develop a methodology for generalizing this model to accommodate geographically hierarchical data. This article considers two-level hierarchical structures and allow for the coefficients of both low-level and high-level units to vary over space. We assume that the spatially varying low-level coefficients follow the multivariate Gaussian process, and the spatially varying high-level coefficients follow the multivariate simultaneous autoregressive model that we develop by extending the standard simultaneous autoregressive model to incorporate multivariate data. We apply the proposed model to transaction data of houses sold in 2014 in a part of the city of Los Angeles. The results show that the proposed model predicts housing prices and fits the data effectively.-
dc.languageEnglish-
dc.publisherAMER STATISTICAL ASSOC-
dc.subjectNETWORK TOMOGRAPHY-
dc.subjectLINK DATA-
dc.subjectATTACKS-
dc.subjectDEPENDENCE-
dc.titleHierarchical Spatially Varying Coefficient Process Model-
dc.typeArticle-
dc.identifier.wosid000418769600011-
dc.identifier.scopusid2-s2.0-85026548170-
dc.type.rimsART-
dc.citation.volume59-
dc.citation.issue4-
dc.citation.beginningpage521-
dc.citation.endingpage527-
dc.citation.publicationnameTECHNOMETRICS-
dc.identifier.doi10.1080/00401706.2017.1317290-
dc.contributor.localauthorKim, Heeyoung-
dc.contributor.nonIdAuthorLee, Jaehwan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorHierarchical data-
dc.subject.keywordAuthorMarkov chain Monte Carlo-
dc.subject.keywordAuthorMultivariate simultaneous autoregressive model-
dc.subject.keywordAuthorSpatial heterogeneity-
dc.subject.keywordAuthorSpatially varying coefficient process-
dc.subject.keywordPlusNETWORK TOMOGRAPHY-
dc.subject.keywordPlusLINK DATA-
dc.subject.keywordPlusATTACKS-
dc.subject.keywordPlusDEPENDENCE-
Appears in Collection
IE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0