Reading between the Lines: Object Localization Using Implicit Cues from Image Tags

Cited 56 time in webofscience Cited 0 time in scopus
  • Hit : 272
  • Download : 0
Current uses of tagged images typically exploit only the most explicit information: the link between the nouns named and the objects present somewhere in the image. We propose to leverage "unspoken" cues that rest within an ordered list of image tags so as to improve object localization. We define three novel implicit features from an image's tags-the relative prominence of each object as signified by its order of mention, the scale constraints implied by unnamed objects, and the loose spatial links hinted at by the proximity of names on the list. By learning a conditional density over the localization parameters (position and scale) given these cues, we show how to improve both accuracy and efficiency when detecting the tagged objects. Furthermore, we show how the localization density can be learned in a semantic space shared by the visual and tag-based features, which makes the technique applicable for detection in untagged input images. We validate our approach on the PASCAL VOC, LabelMe, and Flickr image data sets, and demonstrate its effectiveness relative to both traditional sliding windows as well as a visual context baseline. Our algorithm improves state-of-the-art methods, successfully translating insights about human viewing behavior (such as attention, perceived importance, or gaze) into enhanced object detection.
Publisher
IEEE COMPUTER SOC
Issue Date
2012-06
Language
English
Article Type
Article
Keywords

SCALE

Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.34, no.6, pp.1145 - 1158

ISSN
0162-8828
DOI
10.1109/TPAMI.2011.190
URI
http://hdl.handle.net/10203/238879
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 56 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0