Atomic-Scale Spectroscopy of Gated Monolayer MoS2

Cited 26 time in webofscience Cited 0 time in scopus
  • Hit : 666
  • Download : 0
The electronic properties of semiconducting monolayer transition-metal dichalcogenides can be tuned by electrostatic gate potentials. Here we report gate-tunable imaging and spectroscopy of monolayer MoS2 by atomic-resolution scanning tunneling microscopy/spectroscopy (STM/STS). Our measurements are performed on large-area samples grown by metal organic chemical vapor deposition (MOCVD) techniques on a silicon oxide substrate. Topographic measurements of defect density indicate a sample quality comparable to single-crystal MoS2. From gate voltage dependent spectroscopic measurements, we determine that in-gap states exist in or near the MoS2 film at a density of 1.3 x 10(12) eV(-1) cm(-2). By combining the single-particle band gap measured by STS with optical measurements, we estimate an exciton binding energy of 230 meV on this substrate, in qualitative agreement with numerical simulation. Grain boundaries are observed in these polycrystalline samples, which are seen to not have strong electronic signatures in STM imaging.
Publisher
AMER CHEMICAL SOC
Issue Date
2016-05
Language
English
Article Type
Article
Keywords

TRANSITION-METAL DICHALCOGENIDES; SCANNING TUNNELING SPECTROSCOPY; HEXAGONAL BORON-NITRIDE; SINGLE-LAYER MOS2; MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; ELECTRICAL CONTROL; GRAIN-BOUNDARIES; EDGE STATES; GRAPHENE

Citation

NANO LETTERS, v.16, no.5, pp.3148 - 3154

ISSN
1530-6984
DOI
10.1021/acs.nanolett.6b00473
URI
http://hdl.handle.net/10203/238855
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0