DC Field | Value | Language |
---|---|---|
dc.contributor.author | Im, Bo-Hae | ko |
dc.contributor.author | Wallace, Erik | ko |
dc.date.accessioned | 2018-01-22T02:03:48Z | - |
dc.date.available | 2018-01-22T02:03:48Z | - |
dc.date.created | 2017-11-25 | - |
dc.date.created | 2017-11-25 | - |
dc.date.created | 2017-11-25 | - |
dc.date.issued | 2018-03 | - |
dc.identifier.citation | JOURNAL OF NUMBER THEORY, v.184, pp.68 - 84 | - |
dc.identifier.issn | 0022-314X | - |
dc.identifier.uri | http://hdl.handle.net/10203/237144 | - |
dc.description.abstract | Let K be a number field, and let X -> P-K(1) be a degree p covering branched only at 0, 1, and infinity. If K is a field containing a primitive p-th root of unity then the covering of P-1 is Galois over K, and if p is congruent to 1 mod 6, then there is an automorphism sigma of X which cyclically permutes the branch points. Under these assumptions, we show that the Jacobian of both X and X/<sigma > gain rank over infinitely many linearly disjoint cyclic degree p-extensions of K. We also show the existence of an infinite family of elliptic curves whose j-invariants are parametrized by a modular function on Gamma(0)(3) and that gain rank over infinitely many cyclic degree 3-extensions of Q. | - |
dc.language | English | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.title | Rank gain of Jacobian varieties over finite Galois extensions | - |
dc.type | Article | - |
dc.identifier.wosid | 000416612800003 | - |
dc.identifier.scopusid | 2-s2.0-85030478946 | - |
dc.type.rims | ART | - |
dc.citation.volume | 184 | - |
dc.citation.beginningpage | 68 | - |
dc.citation.endingpage | 84 | - |
dc.citation.publicationname | JOURNAL OF NUMBER THEORY | - |
dc.identifier.doi | 10.1016/j.jnt.2017.08.010 | - |
dc.contributor.localauthor | Im, Bo-Hae | - |
dc.contributor.nonIdAuthor | Wallace, Erik | - |
dc.description.isOpenAccess | N | - |
dc.type.journalArticle | Article | - |
dc.subject.keywordAuthor | Jacobian varieties | - |
dc.subject.keywordAuthor | Elliptic curves | - |
dc.subject.keywordAuthor | Rank | - |
dc.subject.keywordPlus | CURVES | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.