DeepPore: Fingerprint Pore Extraction Using Deep Convolutional Neural Networks

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 610
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJang, Han-Ulko
dc.contributor.authorKim, Dongkyuko
dc.contributor.authorMun, Seung-Minko
dc.contributor.authorChoi, Sung-Heeko
dc.contributor.authorLee, Heung-Kyuko
dc.date.accessioned2017-11-21T04:05:24Z-
dc.date.available2017-11-21T04:05:24Z-
dc.date.created2017-10-31-
dc.date.created2017-10-31-
dc.date.issued2017-12-
dc.identifier.citationIEEE SIGNAL PROCESSING LETTERS, v.24, no.12, pp.1808 - 1812-
dc.identifier.issn1070-9908-
dc.identifier.urihttp://hdl.handle.net/10203/227182-
dc.description.abstractAs technological developments have enabled high-quality fingerprint scanning, sweat pores, one of the Level 3 features of fingerprints, have been successfully used in automatic fingerprint recognition systems (AFRS). Since the pore extraction process is a critical step for AFRS, high accuracy is required. However, it is difficult to extract the pore correctly because the pore shape depends on the person, region, and pore type. To solve the problem, we have presented a pore extraction method using deep convolutional neural networks and pore intensity refinement. The deep networks are used to detect pores in detail using a large area of a fingerprint image. We then refine the pore information by finding local maxima to identify pores with different intensities in the fingerprint image. The experimental results show that our pore extraction method performs better than the state-of-the-art methods.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectHIGH-RESOLUTION-
dc.titleDeepPore: Fingerprint Pore Extraction Using Deep Convolutional Neural Networks-
dc.typeArticle-
dc.identifier.wosid000413962800005-
dc.identifier.scopusid2-s2.0-85031820033-
dc.type.rimsART-
dc.citation.volume24-
dc.citation.issue12-
dc.citation.beginningpage1808-
dc.citation.endingpage1812-
dc.citation.publicationnameIEEE SIGNAL PROCESSING LETTERS-
dc.identifier.doi10.1109/LSP.2017.2761454-
dc.contributor.localauthorChoi, Sung-Hee-
dc.contributor.localauthorLee, Heung-Kyu-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBiometrics-
dc.subject.keywordAuthorconvolutional neural network (CNN)-
dc.subject.keywordAuthorfingerprint-
dc.subject.keywordAuthorpore extraction-
dc.subject.keywordPlusHIGH-RESOLUTION-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0