An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Cited 58 time in webofscience Cited 0 time in scopus
  • Hit : 673
  • Download : 0
Hausdorff distance measure is very important in CAD/CAE/CAM related applications. This manuscript presents an efficient framework and two complementary subalgorithms to directly compute the exact Hausdorff distance for general 3D point sets. The first algorithm of Nonoverlap Hausdorff Distance (NOHD) combines branch-and-bound with early breaking to cut down the Octree traversal time in case of spatial nonoverlap. The second algorithm of Overlap Hausdorff Distance (OHD) integrates a point culling strategy and nearest neighbor search to reduce the number of points traversed in case of spatial overlap. The two complementary subalgorithms can achieve a highly efficient and balanced result. Both NOHD and OHD compute the exact Hausdorff distance directly for arbitrary 3D point sets. We conduct a number of experiments on benchmark models and CAD application models, and compare the proposed approach with other state-of-the-art algorithms. The results demonstrate the effectiveness of our method.
Publisher
IOS PRESS
Issue Date
2017
Language
English
Article Type
Article
Keywords

FREEFORM GEOMETRIC-MODELS; FIBROID ULTRASOUND IMAGES; HUMAN FACE RECOGNITION; CAD SYSTEMS; STEEL CONNECTIONS; MICROCAD SYSTEM; DATA EXCHANGE; DESIGN; ALGORITHMS; OPTIMIZATION

Citation

INTEGRATED COMPUTER-AIDED ENGINEERING, v.24, no.3, pp.261 - 277

ISSN
1069-2509
DOI
10.3233/ICA-170544
URI
http://hdl.handle.net/10203/225263
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 58 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0