Anomalous triple gauge couplings in the effective field theory approach at the LHC

Cited 49 time in webofscience Cited 0 time in scopus
  • Hit : 263
  • Download : 117
We discuss how to perform consistent extractions of anomalous triple gauge couplings (aTGC) from electroweak boson pair production at the LHC in the Standard Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches in pp -> W Z (WW) -> l(1)vl(+)l(-)(v(l)) channels, we find that: (a) working consistently at order Lambda(-2) in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2 data are not improved, (b) the strong limits quoted by the experimental collaborations are due to the partial Lambda(-4) corrections (dimension-6 squared contributions). Using helicity selection rule arguments we are able to explain the suppression in some of the interference terms, and discuss conditions on New Physics (NP) models that can benefit from such LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale, an assumption that can be relaxed by imposing cuts on the underlying scale of the process (root s). In practice, we find almost no correlation between root s and the experimentally accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we provide a method to set (conservative) aTGC bounds in this situation, and recast the present searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the bounds obtained directly in the model with those from the SMEFT analysis.
Publisher
SPRINGER
Issue Date
2017-02
Language
English
Article Type
Article
Citation

JOURNAL OF HIGH ENERGY PHYSICS, v.02, pp.115

ISSN
1029-8479
DOI
10.1007/JHEP02(2017)115
URI
http://hdl.handle.net/10203/223285
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
000395018900009.pdf(1.73 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 49 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0