Rivulet flow over a flexible beam

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 364
  • Download : 0
We study theoretically and experimentally how a thin layer of liquid flows along a flexible beam. The flow is modelled using lubrication theory and the substrate is modelled as an elastica which deforms according to the Euler-Bernoulli equation. A constant flux of liquid is supplied at one end of the beam, which is clamped horizontally, while the other end of the beam is free. As the liquid film spreads, its weight causes the beam deflection to increase, which in turn enhances the spreading rate of the liquid. This feedback mechanism causes the front position sigma(t) and the deflection angle at the front phi(t) to go through a number of different power-law behaviours. For early times, the liquid spreads like a horizontal gravity current, with sigma(t) alpha t(4/5) and phi(t) alpha t(13/5). For intermediate times, the deflection of the beam leads to rapid acceleration of the liquid layer, with sigma(t) alpha t(4) and phi(t) alpha t(9). Finally, when the beam has sagged to become almost vertical, the liquid film flows downward with sigma(t) alpha t and phi(t) similar to pi/2. We demonstrate good agreement between these theoretical predictions and experimental results.
Publisher
CAMBRIDGE UNIV PRESS
Issue Date
2016-06
Language
English
Article Type
Article
Keywords

THIN-FILM; ELASTOHYDRODYNAMICS; PROPAGATION; SUBSTRATE; CYLINDER; SURFACE; FLUID

Citation

JOURNAL OF FLUID MECHANICS, v.796

ISSN
0022-1120
DOI
10.1017/jfm.2016.258
URI
http://hdl.handle.net/10203/221003
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0