Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow

Cited 40 time in webofscience Cited 0 time in scopus
  • Hit : 485
  • Download : 0
A pair of flexible flags clamped vertically in a heated channel was numerically modeled to investigate the dynamics of the flexible flags and their effects on heat transfer enhancement. The penalty immersed boundary method was adopted to analyze the fluid-structure-thermal interaction between the surrounding fluid and the flexible flags. The flexible flags displayed three distinct movement modes: a flapping mode, a fully deflected mode, and an irregular mode that depended on the relationship between the hydrodynamic force and the restoring force. In the flapping mode, vortices shed from flexible flags merged and increased in magnitude. The merged vortical structures swept out the thermal boundary layer and enhanced thermal mixing between the fluid near the heated wall and the channel core flow. Compared to rigid flags, the flexible flags significantly improved the thermal efficiency. The effects of the bending rigidity, channel height, and Reynolds number on the thermal efficiency were observed, and an optimal parameter set was obtained. The presence of the flexible flags with the optimal parameter set resulted in an increase of up to 185% in the net heat flux and 106% in the thermal efficiency factor, compared to the baseline flow. The correlation between the vorticity and the temperature field was examined in detail using the dynamic mode decomposition (DMD) method. (C) 2016 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2017-04
Language
English
Article Type
Article
Keywords

IMMERSED BOUNDARY METHOD; LONGITUDINAL VORTEX GENERATORS; INVERTED FLAG; UNIFORM-FLOW; OPTIMIZATION; FRICTION; MODEL

Citation

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.107, pp.391 - 402

ISSN
0017-9310
DOI
10.1016/j.ijheatmasstransfer.2016.11.057
URI
http://hdl.handle.net/10203/220847
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 40 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0