A 32-KB standard CMOS antifuse one-time programmable ROM embedded in a 16-bit microcontroller

Cited 42 time in webofscience Cited 0 time in scopus
  • Hit : 472
  • Download : 3280
DC FieldValueLanguage
dc.contributor.authorCha, HKko
dc.contributor.authorYun, Iko
dc.contributor.authorKim, Jko
dc.contributor.authorSo, BCko
dc.contributor.authorChun, Kko
dc.contributor.authorNam, Iko
dc.contributor.authorLee, Kwyroko
dc.date.accessioned2011-02-09T07:11:31Z-
dc.date.available2011-02-09T07:11:31Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2006-09-
dc.identifier.citationIEEE JOURNAL OF SOLID-STATE CIRCUITS, v.41, pp.2115 - 2124-
dc.identifier.issn0018-9200-
dc.identifier.urihttp://hdl.handle.net/10203/22026-
dc.description.abstractA 32-KB standard CMOS antifuse one-time programmable (OTP) ROM embedded in a 16-bit microcontroller as its program memory is designed and implemented in 0.18-mu m standard CMOS technology. The proposed 32-KB OTP ROM cell array consists of 4.2 mu m(2) three-transistor (3T) OTP cells where each cell utilizes a thin gate-oxide antifuse, a high-voltage blocking transistor, and an access transistor, which are all compatible with standard CMOS process. In order for high density implementation, the size of the 3T cell has been reduced by 80% in comparison to previous work. The fabricated total chip size, including 32-KB OTP ROM, which can be programmed via external (IC)-C-2 master device such as universal (IC)-C-2 serial EEPROM programmer, 16-bit microcontroller with 16-KB program SRAM and 8-KB data SRAM, peripheral circuits to interface other system building blocks, and bonding pads, is 9.9 mm(2). This paper describes the cell, design, and implementation of high-density CMOS OTP ROM, and shows its promising possibilities in embedded applications.-
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectBREAKDOWN-
dc.subjectEPROM-
dc.subjectMODEL-
dc.titleA 32-KB standard CMOS antifuse one-time programmable ROM embedded in a 16-bit microcontroller-
dc.typeArticle-
dc.identifier.wosid000240077100016-
dc.identifier.scopusid2-s2.0-33748358173-
dc.type.rimsART-
dc.citation.volume41-
dc.citation.beginningpage2115-
dc.citation.endingpage2124-
dc.citation.publicationnameIEEE JOURNAL OF SOLID-STATE CIRCUITS-
dc.identifier.doi10.1109/JSSC.2006.880603-
dc.contributor.localauthorLee, Kwyro-
dc.contributor.nonIdAuthorCha, HK-
dc.contributor.nonIdAuthorYun, I-
dc.contributor.nonIdAuthorKim, J-
dc.contributor.nonIdAuthorSo, BC-
dc.contributor.nonIdAuthorChun, K-
dc.contributor.nonIdAuthorNam, I-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCMOS antifuse-
dc.subject.keywordAuthorCMOS OTP-
dc.subject.keywordAuthorembedded PROM-
dc.subject.keywordAuthorgate-oxide breakdown-
dc.subject.keywordAuthor(IC)-C-2-
dc.subject.keywordAuthormicrocontroller-
dc.subject.keywordAuthornonvolatile memory-
dc.subject.keywordAuthorOTP ROM-
dc.subject.keywordPlusBREAKDOWN-
dc.subject.keywordPlusEPROM-
dc.subject.keywordPlusMODEL-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 42 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0