On the exponent of the automorphism group of a compact Riemann surface

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 107
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSchweizer, Andreasko
dc.date.accessioned2016-12-01T08:06:27Z-
dc.date.available2016-12-01T08:06:27Z-
dc.date.created2016-11-28-
dc.date.created2016-11-28-
dc.date.issued2016-10-
dc.identifier.citationARCHIV DER MATHEMATIK, v.107, no.4, pp.329 - 340-
dc.identifier.issn0003-889X-
dc.identifier.urihttp://hdl.handle.net/10203/214641-
dc.description.abstractLet X be a compact Riemann surface of genus g >= 2, and let Aut(X) be its group of automorphisms. We show that the exponent of Aut(X) is bounded by 42(g-1). We also determine explicitly the infinitely many values of g for which this bound is reached and the corresponding groups. Finally, we discuss related questions for subgroups G of Aut(X) that are subject to additional conditions, for example being solvable-
dc.languageEnglish-
dc.publisherSPRINGER BASEL AG-
dc.subjectFINITE-GROUPS-
dc.subjectSYLOW 2-SUBGROUPS-
dc.titleOn the exponent of the automorphism group of a compact Riemann surface-
dc.typeArticle-
dc.identifier.wosid000386605400004-
dc.identifier.scopusid2-s2.0-84988973098-
dc.type.rimsART-
dc.citation.volume107-
dc.citation.issue4-
dc.citation.beginningpage329-
dc.citation.endingpage340-
dc.citation.publicationnameARCHIV DER MATHEMATIK-
dc.identifier.doi10.1007/s00013-016-0933-z-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCompact Riemann surface-
dc.subject.keywordAuthorAutomorphism group-
dc.subject.keywordAuthorExponent-
dc.subject.keywordAuthorHurwitz group-
dc.subject.keywordAuthorZ-group-
dc.subject.keywordAuthorCyclic Sylow subgroup-
dc.subject.keywordPlusFINITE-GROUPS-
dc.subject.keywordPlusSYLOW 2-SUBGROUPS-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0